Zahra Amirsardari, Akram Dourani, Mohamad Ali Amirifar, and Nooredin Ghadiri Massoom, Comparative characterization of iridium loading on catalyst assessment under different conditions, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2058-4
Cite this article as:
Zahra Amirsardari, Akram Dourani, Mohamad Ali Amirifar, and Nooredin Ghadiri Massoom, Comparative characterization of iridium loading on catalyst assessment under different conditions, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2058-4
Research Article

Comparative characterization of iridium loading on catalyst assessment under different conditions

+ Author Affiliations
  • Corresponding author:

    Zahra Amirsardari    E-mail: Z.amirsardari@isrc.ac.ir

  • Received: 8 January 2020Revised: 20 March 2020Accepted: 30 March 2020Available online: 3 April 2020
  • To discuss the potential role of iridium (Ir) nanoparticles loaded under atmospheric and high pressures, we prepared a series of catalysts with the same active phase but different contents of 10wt%, 20wt%, and 30wt% on gamma-alumina for decomposition of hydrazine. Under atmospheric pressure, the performance of the catalyst was better when 30wt% of the Ir nanoparticles was used with chelating agent that had greater selectivity of approximately 27%. The increase in the reaction rate from 175 to 220 h−1 at higher Ir loading (30wt%) was due to a good dispersion of high-number active phases rather than an agglomeration surface. As a satisfactory result of this investigation at high pressure, Ir catalysts with different weight percentages showed the same stability against crushing and activity with a characteristic velocity of approximately 1300 m/s.
  • loading
  • [1]
    I. Ali, K. AlGhamdi, F.T. Al-Wadaani, Advances in iridium nano catalyst preparation, characterization and applications, J. Mol. Liq., 280(2019), p. 274. doi: 10.1016/j.molliq.2019.02.050
    [2]
    P. McRight, C. Popp, C. Pierce, A. Turpin, W. Urbanchock, and M. Wilson, Confidence testing of Shell-405 and S-405 catalysts in a monopropellant hydrazine thruster, [in] 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, Arizona, 2005.
    [3]
    P.X. Zhang, Y.G. Wang, Y.Q. Huang, T. Zhang, G.S. Wu, and J. Li, Density functional theory investigations on the catalytic mechanisms of hydrazine decompositions on Ir(111), Catal. Today, 165(2011), No. 1, p. 80. doi: 10.1016/j.cattod.2011.01.012
    [4]
    S. Mary, C. Kappenstein, S. Balcon, S. Rossignol, and E. Gengembre, Monopropellant decomposition catalysts. I. Ageing of highly loaded Ir/Al2O3 catalysts in oxygen and steam. Influence of chloride content, Appl. Catal. A, 182(1999), No. 2, p. 317. doi: 10.1016/S0926-860X(99)00019-8
    [5]
    A.E. Makled and H. Belal, Modeling of hydrazine decomposition for monopropellant thrusters, [in] 13th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT-13, Cairo, 2009.
    [6]
    Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, and S. Shakhesi, Facile carbothermal reduction synthesis of ZrB2 nanoparticles: The effect of starting precursors, Mater. Manuf. Processes, 31(2016), No. 2, p. 134. doi: 10.1080/10426914.2015.1019119
    [7]
    Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, and S. Shakhesi, Preparation and characterization of a novel hetero-nanostructure of zirconium diboride nanoparticle-coated multi-walled carbon nanotubes, RSC Adv., 4(2014), No. 106, p. 61409. doi: 10.1039/C4RA09739D
    [8]
    Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, and M.R. Jahannama, The effect of starting precursors on size and shape modification of ZrB2 ceramic nanoparticles, J. Nanosci. Nanotechnol., 15(2015), No. 12, p. 10017. doi: 10.1166/jnn.2015.11587
    [9]
    G. Fujii, D. Goto, H. Kagawa, S. Murayama, K. Kajiwara, H. Ikeda, N. Shinozaki, T. Nagao, N. Morita, and E. Yabuhara, The development results of the long life 1N hydrazine monopropellant thruster, J. Space Technol. Sci., 28(2013), No. 1, p. 1_37.
    [10]
    C.H. Hwang, S.N. Lee, S.W. Baek, C.Y. Han, S.K. Kim, and M.J. Yu, Effects of catalyst bed failure on thermochemical phenomena for a hydrazine monopropellant thruster using Ir/Al2O3 catalysts, Ind. Eng. Chem. Res., 51(2012), No. 15, p. 5382. doi: 10.1021/ie202347f
    [11]
    G. Groppi, G. Airoldi, C. Cristiani, and E. Tronconi, Characteristics of metallic structured catalysts with high thermal conductivity, Catal. Today, 60(2000), No. 1-2, p. 57. doi: 10.1016/S0920-5861(00)00317-5
    [12]
    R.A. Mischke and J.M. Smith, Thermal conductivity of alumina catalyst pellets, Ind. Eng. Chem. Fundamen., 1(1962), No. 4, p. 288. doi: 10.1021/i160004a011
    [13]
    N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nat. Mater., 15(2016), No. 8, p. 804. doi: 10.1038/nmat4687
    [14]
    S. Kang, D. Lee, and S. Kwon, Lanthanum doping for longevity of alumina catalyst bed in hydrogen peroxide thruster, Aerosp. Sci. Technol., 46(2015), p. 197. doi: 10.1016/j.ast.2015.07.003
    [15]
    K.-W. Yao, S. Jaenicke, J.-Y. Lin, and K.L. Tan, Catalytic decomposition of nitrous oxide on grafted CuO/γ-Al2O3 catalysts, Appl. Catal. B, 16(1998), No. 3, p. 291. doi: 10.1016/S0926-3373(97)00086-6
    [16]
    I.J. Jang, H.S. Shin, N.R. Shin, S.H. Kim, S.K. Kim, M.J. Yu, and S.J. Cho, Macroporous–mesoporous alumina supported iridium catalyst for hydrazine decomposition, Catal. Today, 185(2012), No. 1, p. 198. doi: 10.1016/j.cattod.2011.08.034
    [17]
    M.L. Cui, Y.S. Chen, Q.F. Xie, D.P. Yang, and M.Y. Han, Synthesis, properties and applications of noble metal iridium nanomaterials, Coord. Chem. Rev., 387(2019), p. 450. doi: 10.1016/j.ccr.2018.12.008
    [18]
    I. Ali, Z.A. Alothman, and A. Alwarthan, Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles, J. Mol. Liq., 241(2017), p. 123. doi: 10.1016/j.molliq.2017.06.005
    [19]
    I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations, J. Mol. Liq., 271(2018), p. 677. doi: 10.1016/j.molliq.2018.09.021
    [20]
    I. Ali, O.M.L. Alharbi, Z.A. Alothman, and A. Alwarthan, Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water, Colloids Surf. B, 171(2018), p. 606. doi: 10.1016/j.colsurfb.2018.07.071
    [21]
    I. Ali, A.A. Basheer, A. Kucherova, N. Memetov, T. Pasko, K. Ovchinnikov, V. Pershin, D. Kuznetsov, E. Galunin, V. Grachev, and A. Tkachev, Advances in carbon nanomaterials as lubricants modifiers, J. Mol. Liq., 279(2019), p. 251. doi: 10.1016/j.molliq.2019.01.113
    [22]
    W. Gao, A. Pei, R.F. Dong, and J. Wang, Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels, J. Am. Chem. Soc., 136(2014), No. 6, p. 2276. doi: 10.1021/ja413002e
    [23]
    R. Vieira, C. Pham-Huu, N. Keller, and M.J. Ledoux, New carbon nanofiber/graphite felt composite for use as a catalyst support for hydrazine catalytic decomposition, Chem. Commun., (2002), No. 9, p. 954. doi: 10.1039/b202032g
    [24]
    V. Prasad and M.S. Vasanthkumar, Iridium-decorated multiwall carbon nanotubes and its catalytic activity with Shell 405 in hydrazine decomposition, J. Nanopart. Res., 17(2015), No. 10, art. No. 398. doi: 10.1007/s11051-015-3199-7
    [25]
    N. Firdous, N.K. Janjua, I. Qazi, and M.H.S. Wattoo, Optimal Co–Ir bimetallic catalysts supported on γ-Al2O3 for hydrogen generation from hydrous hydrazine, Int. J. Hydrogen Energy, 41(2016), No. 2, p. 984. doi: 10.1016/j.ijhydene.2015.10.084
    [26]
    J. Luo, M.M. Maye, V. Petkov, N.N. Kariuki, L.Y. Wang, P. Njoki, D. Mott, Y. Lin, and C.J. Zhong, Phase properties of carbon-supported gold–platinum nanoparticles with different bimetallic compositions, Chem. Mater., 17(2005), No. 12, p. 3086. doi: 10.1021/cm050052t
    [27]
    T. Cordero-Lanzac, R. Palos, J.M. Arandes, P. Castaño, J. Rodríguez-Mirasol, T. Cordero, and J. Bilbao, Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation, Appl. Catal. B, 203(2017), p. 389. doi: 10.1016/j.apcatb.2016.10.018
    [28]
    J.N. Hinckel, J.A.R. Jorge, T.G.S. Neto, M.A. Zacharias, and J.A.L. Palandi, Low cost catalysts for hydrazine monopropellant thrusters, [in] 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado, 2009.
    [29]
    Z.M. Zhang, X. Hu, J.J. Li, G.G. Gao, D.H. Dong, R. Westerhof, S. Hu, J. Xiang, and Y. Wang, Steam reforming of acetic acid over Ni/Al2O3 catalysts: Correlation of nickel loading with properties and catalytic behaviors of the catalysts, Fuel, 217(2018), p. 389. doi: 10.1016/j.fuel.2017.12.114
    [30]
    D.M. Doyle, G. Palumbo, K.T. Aust, A.M. El-Sherik, and U. Erb, The influence of intercrystalline defects on hydrogen activity and transport in nickel, Acta Metall. Mater., 43(1995), No. 8, p. 3027. doi: 10.1016/0956-7151(95)00019-R
    [31]
    Z. Amirsardari, A. Dourani, M.A. Amirifar, N.G. Massoom, and M.R. Jahannama, Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone, Mater. Chem. Phys., 239(2020), art. No. 122015. doi: 10.1016/j.matchemphys.2019.122015
    [32]
    L. Li, X.D. Wang, X.Q. Zhao, M.Y. Zheng, R.H. Cheng, L.X. Zhou, and T. Zhang, Microcalorimetric studies of the iridium catalyst for hydrazine decomposition reaction, Thermochim. Acta, 434(2005), No. 1-2, p. 119. doi: 10.1016/j.tca.2004.12.018
    [33]
    S.G. Pakdehi and M. Rasoolzadeh, Comparison of catalytic behavior of iridium and nickel nanocatalysts for decomposition of hydrazine, Procedia Mater. Sci., 11(2015), p. 749. doi: 10.1016/j.mspro.2015.11.071
    [34]
    D.I. Han, C.Y. Han, and H.D. Shin, Empirical and computational performance prediction for monopropellant hydrazine thruster employed for satellite, J. Spacecraft Rockets, 46(2009), No. 6, p. 1186. doi: 10.2514/1.43739
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Share Article

    Article Metrics

    Article views (1714) PDF downloads(31) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return