Cite this article as:

Research Article

Electrochemical derusting in molten Na2CO3-K2CO3

+ Author Affiliations
  • Received: 27 December 2019Revised: 12 April 2020Accepted: 13 April 2020Available online: 16 April 2020
  • The formation of a rust layer on the surface of iron and steels accelerates their degradation and eventually causes the failure of materials. In addition to fabricating a protective layer or using a sacrificial anode, repairing or removing the rust layer is another way to reduce the corrosion rate and extend the lifespan of iron and steels. Herein, an electrochemical deoxidation approach is employed to repair the rust layer in molten Na2CO3-K2CO3. The rust consists of oxides which can be electrochemically reduced to metals/alloys, releasing oxide ions into the molten salt. The electrochemical method uses electrons to convert oxide to metal rather than remove the entire rust layer away. Due to the fluidity of the molten salt electrolyte, the electrochemical derusting approach is not constrained by the shape of the objects. The rusty layer of iron rods and screws was electrochemically converted to iron by molten salt electrolysis. Thus, the high-temperature molten salt electrolysis may be an effective way to metalize iron rust and be used for repairing cultural relics and healing the rust layers on other metals.
  • 加载中
  •  

  • [1] Seyed Rahim Kiahosseini and Hossein Ahmadian, Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1917-3
    [2] Yu-hui Liu,Meng Tang,Shuang Zhang,Yu-ling Lin,Ying-cai Wang,You-qun Wang,Ying Dai,Xiao-hong Cao,Zhi-bin Zhang, and Yun-hai Liu, Insights into U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2154-5
    [3] Shu-mei Chen,Chun-fa Liao,Jue-yuan Lin,Bo-qing Cai,Xu Wang, and Yun-fen Jiao, Erratum to: Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1938-y
    [4] Yan-ke Wu,Song Chen, and Li-jun Wang, Electrochemistry of Hf (IV) in NaCl-KCl-NaF-K2HfF6 molten salts, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2083-3
    [5] Dong Wang,Sheng Pang,Chun-yue Zhou,Yan Peng,Zhi Wang, and Xu-zhong Gong, Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2165-2
    [6] Hai-yan Yu,Xiao-lin Pan,Yong-pan Tian, and Gan-feng Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1951-1
    [7] Guo-xing Ren,Song-wen Xiao,Cai-bin Liao, and Zhi-hong Liu, The activity coefficient of nickel oxide in SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623K, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2205-y
    [8] Bo Wang,Chao-yi Chen,Jun-qi Li,Lin-zhu Wang,Yuan-pei Lan, and Shi-yu Wang, Solid oxide membrane-assisted electrolytic reduction of Cr2O3 in molten CaCl2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2141-x
    [9] Qi-qiang Mou, Jian-li Li, Qiang Zeng, and  Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1822-9
    [10] Khushdeep Goyal, Hazoor Singh, and  Rakesh Bhatia, Hot-corrosion behavior of Cr2O3-CNT-coated ASTM-SA213-T22 steel in a molten salt environment at 700℃, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1742-8
    [11] Min-min Sun, Jian-liang Zhang, Ke-jiang Li, Ke Guo, Zi-ming Wang, and  Chun-he Jiang, Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1846-1
    [12] Shu-mei Chen, Chun-fa Liao, Jue-yuan Lin, Bo-qing Cai, Xu Wang, and  Yun-fen Jiao, Electrical conductivity of molten LiF-DyF3-Dy2O3-Cu2O system for Dy-Cu intermediate alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1775-z
    [13] Zhi-yu Chang, Ping Wang, Jian-liang Zhang, Ke-xin Jiao, Yue-qiang Zhang, and  Zheng-jian Liu, Effect of CO2 and H2O on gasification dissolution and deep reaction of coke, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1694-4
    [14] Yi-fan Zhang, Zhen Ji, Ke Chen, Cheng-chang Jia, Shan-wu Yang, and  Meng-ya Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1398-1
    [15] Kai-lin Cheng, Dao-bin Mu, Bo-rong Wu, Lei Wang, Ying Jiang, and  Rui Wang, Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1413-6
    [16] Xin Lu, Takahiro Miki, and  Tetsuya Nagasaka, Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1375-8
    [17] Bing-wei Luo, Jie Zhou, Peng-peng Bai, Shu-qi Zheng, Teng An, and  Xiang-li Wen, Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2-H2O-CO2 system:products, reaction kinetics, and pitting sensitivity, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1447-9
    [18] Jian-zheng Song, Zi-yang Zhao, Xin Zhao, Rui-dong Fu, and  Shu-min Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1509-z
    [19] Chun-fa Liao, Yun-fen Jiao, Xu Wang, Bo-qing Cai, Qiang-chao Sun, and  Hao Tang, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1493-3
    [20] Dong-hua Tian, Zhen-chao Han, Ming-yong Wang, and  Shu-qiang Jiao, Direct electrochemical N-doping to carbon paper in Molten LiCl-KCl-Li3N, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2026-z
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(965) PDF downloads(16) Cited by()

Proportional views

Electrochemical derusting in molten Na2CO3-K2CO3

  • Corresponding author:

    Hua-yi Yin    E-mail: yinhy@smm.neu.edu.cn

  • 1. Key Laboratory for Ecological Metallurgy of Multimetallic Mineral of Ministry of Education, School of metallurgy, Northeastern University, Shenyang 110819, China
  • 2. Key Laboratory of Data Analytics and Optimization for Smart Industry of Ministry of Education, Northeastern University, Shenyang 110819, China

Abstract: The formation of a rust layer on the surface of iron and steels accelerates their degradation and eventually causes the failure of materials. In addition to fabricating a protective layer or using a sacrificial anode, repairing or removing the rust layer is another way to reduce the corrosion rate and extend the lifespan of iron and steels. Herein, an electrochemical deoxidation approach is employed to repair the rust layer in molten Na2CO3-K2CO3. The rust consists of oxides which can be electrochemically reduced to metals/alloys, releasing oxide ions into the molten salt. The electrochemical method uses electrons to convert oxide to metal rather than remove the entire rust layer away. Due to the fluidity of the molten salt electrolyte, the electrochemical derusting approach is not constrained by the shape of the objects. The rusty layer of iron rods and screws was electrochemically converted to iron by molten salt electrolysis. Thus, the high-temperature molten salt electrolysis may be an effective way to metalize iron rust and be used for repairing cultural relics and healing the rust layers on other metals.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return