Cite this article as:

Research Article

Effect of TiB2 and Al3Ti on Microstructure, Mechanical Properties and Fracture Behaviour of Near Eutectic Al-12.6Si Alloy

+ Author Affiliations
  • Received: 15 January 2020Revised: 7 April 2020Accepted: 15 April 2020Available online: 16 April 2020
  • Near eutectic 12.6SiAl alloy has been developed with 0 wt%, 2 wt. %, 4 wt.% and 6 wt.% Al-5Ti-1B master alloy. Microstructural morphology, hardness, tensile strength, elongation and fracture behaviour of the alloys have been studied. The unmodified 12.6SiAl alloy has an irregular needle and platy eutectic silicon (ESi) and coarse polygonal primary silicon (PSi) particles in the matrix-like α-Al phase. The PSi, ESi and α-Al morphology and volume fraction have been changed due to the addition of Al-5Ti-1B master alloy. As an effect of microstructure modification, hardness, UTS and % elongation improved. Nano-sized in-situ Al3Ti particles and ex-situ TiB2 particles are the cause of microstructural modification. The fracture images of the developed alloys exhibit a ductile and brittle mode of fracture at the same time. The Al-5Ti-1B modified alloys have a more ductile mode of fracture and dimples compared to the unmodified one.
  • 加载中
  •  

  • [1] Dong-tao Wang, Hai-tao Zhang, Lei Li, Hai-lin Wu, Ke Qin, and  Jian-zhong Cui, The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al-Mg2Si in situ composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1659-7
    [2] Xiao-feng Wang, Ming-xing Guo, Cun-qiang Ma, Jian-bin Chen, Ji-shan Zhang, and  Lin-zhong Zhuang, Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1645-0
    [3] Hong-xiang Li, Xin-yu Nie, Zan-bing He, Kang-ning Zhao, Qiang Du, Ji-shan Zhang, and  Lin-zhong Zhuang, Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1534-y
    [4] Xiu-ying Ni, Jun Zhao, Jia-lin Sun, Feng Gong, and  Zuo-li Li, Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1466-6
    [5] Zuo-li Li, Jun Zhao, Jia-lin Sun, Feng Gong, and  Xiu-ying Ni, Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1533-z
    [6] Mohammad Baghani and  Mahmood Aliofkhazraei, CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1524-0
    [7] I. Narasimha Murthy and  J. Babu Rao, Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al-Si alloy castings made in sand and Fe-Cr slag molds, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1462-x
    [8] Zhi-hao Zhang, Jie Xue, Yan-bin Jiang, and  Feng Jin, Effect of pre-annealing treatment on the microstructure and mechanical properties of extruded Al-Zn-Mg-Cu alloy bars, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1521-3
    [9] Chun-duo Dai, Rui-na Ma, Wei Wang, Xiao-ming Cao, and  Yan Yu, Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1437-y
    [10] Li Zhang, Bao-lin Wu, and  Yu-lin Liu, Microstructure and mechanical properties of a hot-extruded Al-based composite reinforced with core-shell-structured Ti/Al3Ti, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1536-9
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1096) PDF downloads(24) Cited by()

Proportional views

Effect of TiB2 and Al3Ti on Microstructure, Mechanical Properties and Fracture Behaviour of Near Eutectic Al-12.6Si Alloy

  • Corresponding author:

    Manas Kumar Mondal    E-mail: manas.nitdgp@gmail.com

  • 1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Durgapur, Durgapur-713209, West Bengal, India
  • 2. Department of NDT and Metallurgy Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur-713209, West Bengal, India

Abstract: Near eutectic 12.6SiAl alloy has been developed with 0 wt%, 2 wt. %, 4 wt.% and 6 wt.% Al-5Ti-1B master alloy. Microstructural morphology, hardness, tensile strength, elongation and fracture behaviour of the alloys have been studied. The unmodified 12.6SiAl alloy has an irregular needle and platy eutectic silicon (ESi) and coarse polygonal primary silicon (PSi) particles in the matrix-like α-Al phase. The PSi, ESi and α-Al morphology and volume fraction have been changed due to the addition of Al-5Ti-1B master alloy. As an effect of microstructure modification, hardness, UTS and % elongation improved. Nano-sized in-situ Al3Ti particles and ex-situ TiB2 particles are the cause of microstructural modification. The fracture images of the developed alloys exhibit a ductile and brittle mode of fracture at the same time. The Al-5Ti-1B modified alloys have a more ductile mode of fracture and dimples compared to the unmodified one.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return