Rasmita Jena, K. Chandrakanta, P. Pal, Md. F. Abdullah, S. D. Kaushik, and A.K. Singh, Dielectric relaxation and conduction mechanism in Aurivillius ceramic Bi5Ti3FeO15, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1063-1071. https://doi.org/10.1007/s12613-020-2091-3
Cite this article as:
Rasmita Jena, K. Chandrakanta, P. Pal, Md. F. Abdullah, S. D. Kaushik, and A.K. Singh, Dielectric relaxation and conduction mechanism in Aurivillius ceramic Bi5Ti3FeO15, Int. J. Miner. Metall. Mater., 28(2021), No. 6, pp. 1063-1071. https://doi.org/10.1007/s12613-020-2091-3
Research Article

Dielectric relaxation and conduction mechanism in Aurivillius ceramic Bi5Ti3FeO15

+ Author Affiliations
  • Corresponding author:

    A.K. Singh    E-mail: singhanil@nitrkl.ac.in

  • Received: 11 January 2020Revised: 23 April 2020Accepted: 7 May 2020Available online: 9 May 2020
  • For this study, we synthesized Aurivillius Bi5Ti3FeO15 ceramic using the generic solid-state reaction route and then performed room-temperature X-ray diffraction to confirm that the compound had a single phase with no impurities. The surface morphology of the prepared sample was observed to contain microstructural grains approximately 0.2–2 μm in size. The dielectric properties of the sample were determined as a function of frequency in a range of approximately 100 Hz to 1 MHz at various temperatures (303 K ≤ T ≤ 773 K). Nyquist plots of the impedance data were found to exhibit a semi-circular arc in the high-temperature region, which is explained by the equivalent electrical circuit (R1C1)(R2QC2), where R1 and R2 represent the resistances associated with the grains and grain boundaries, respectively, C1 and C2 are the respective capacitances, and Q is the constant phase element (CPE), which accounts for non-Debye type of behavior. Our results indicate that both the resistance and capacitance of the grain boundaries are more prominent than those of the grains. The alternating current (ac) conductivity data were analyzed based on the Jonscher universal power law, which indicated that the conduction process is dominated by the hopping mechanism. The calculated activation energies of the relaxation and conduction processes were very similar (0.32 to 0.53 eV), from which we conclude that the same type of charge carriers are involved in both processes.

  • loading
  • [1]
    B. Aurivillius, Mixed bismuth oxides with layer lattices, I. Ark. Kemi, 1(1949), p. 463.
    [2]
    Y.L. Bai, B. Yang, and S.F. Zhao, In-situ stress modulated ferroelectric photovoltaic effect in cluster-assembled TbFe2/Bi5Ti3FeO15 heterostructural films, Appl. Phys. Lett., 115(2019), No. 26, p. 261602. doi: 10.1063/1.5129543
    [3]
    C. A-Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, and J.F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes, Nature, 374(1995), No. 6523, p. 627. doi: 10.1038/374627a0
    [4]
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, and W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories, Nature, 401(1999), No. 6754, p. 682. doi: 10.1038/44352
    [5]
    A. Birenbaum and C. Ederer, Potentially multiferroic Aurivillius phase Bi5Ti3FeO15: Cation site preference, electric polarization and magnetic coupling from first principles, Phys. Rev. B, 90(2014), No. 21, art. No. 214190.
    [6]
    F.J. Geng, C.H. Yang, C. Feng, P.P. Lv, X.M. Jiang, Q. Yao, Q. Zhang, C. Wei, and P. Song, Effects of single-coated layer thickness on the microstructure, leakage current and dielectric tenability of Na0.5Bi0.5(Ti, Zn) O3−δ thin films prepared by metal organic decomposition, J. Alloys. Compd., 663(2016), p. 659. doi: 10.1016/j.jallcom.2015.12.153
    [7]
    E.C. Subarao, Crystal chemistry of mixed bismuth oxides with layer-type structure, J. Am. Ceram. Soc., 45(1962), No. 4, p. 166. doi: 10.1111/j.1151-2916.1962.tb11113.x
    [8]
    Y.L. Bai, J.Y. Chen, X. Wu, and S.F. Zhao, Photovoltaic behaviors regulated by band-gap and bipolar electrical cycling in holmium-doped Bi5Ti3FeO15 ferroelectric films, J. Phys. Chem. C, 120(2016), No. 43, p. 24637. doi: 10.1021/acs.jpcc.6b07927
    [9]
    H. Ogawa, M. Kimura, A. Ando, and Y. Sakabe, Temperature dependence of piezoelectric properties of grain oriented CaBi4Ti4O15 ceramics, Jpn. J. Appl. Phys., 40(2001), p. 5715. doi: 10.1143/JJAP.40.5715
    [10]
    S. Ida, C. Ogata, U. Unal, K. Izawa, T. Inoue, O. Altuntasoglu, and Y. Matsumoto, Preparation of a blue luminescent nanosheet derived from layered perovskite Bi2SrTa2O9, J. Am. Chem. Soc., 129(2007), No. 29, p. 8956. doi: 10.1021/ja073105b
    [11]
    C.B. Long, H.Q. Fan, and P.R. Ren, Structure, phase transition behaviors and electrical properties of Nd substituted Aurivillius ploycrystallines Na0.5Ndx Bi2.5x Nb2O9 (x = 0.1, 0.2, 0.3, and 0.5), Inorg. Chem., 52(2013), No. 9, p. 5045. doi: 10.1021/ic302769h
    [12]
    R.E. Newnham, R.W. Wolfe, and J.F. Dorrian, Structural basis of ferroelectricity in the bismuth titanate family, Mater. Res. Bull., 6(1971), No. 10, p. 1029. doi: 10.1016/0025-5408(71)90082-1
    [13]
    Z.H. Tang, B. Yang, J.Y. Chen, Q.S. Lu, and S.F. Zhao, Strong magnetoelectric coupling of Aurivillius phase multiferroic composite films with similar layered perovskite structure, J. Alloys. Compd., 772(2019), p. 298. doi: 10.1016/j.jallcom.2018.09.101
    [14]
    E.C. Subbarao, A family of ferroelectric bismuth compounds, J. Phys. Chem. Solids, 23(1962), No. 6, p. 665. doi: 10.1016/0022-3697(62)90526-7
    [15]
    C.H. Hervoches, A. Snedden, R. Riggs, S.H. Kilcoyne, P. Manuel, and P. Lightfoot, Structural behaviour of the four-layer aurivillius-phase ferroelectrics, J. Solid State Chem., 164(2002), No. 2, p. 280. doi: 10.1006/jssc.2001.9473
    [16]
    X.W. Dong, K.F. Wang, J.G. Wan, J.S. Zhu, and J.M. Liu, Magnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol−gel method, J. Appl. Phys., 103(2008), No. 9, art. No. 094101. doi: 10.1063/1.2908219
    [17]
    A. Srinivas, S.V. Suryanarayan, G.S. Kumar, and M.M. Kumar, Magnetoelectric measurements on Bi5Ti3FeO15 and Bi6Fe2TiO18, J. Phys. Condens. Matter, 11(1999), p. 3335. doi: 10.1088/0953-8984/11/16/014
    [18]
    A. Mohapatra, P.R. Das, and R.N.P. Choudhary, Structural and electrical properties of Bi5Ti3FeO15 ceramics, J. Mater. Sci. Mater. Electron., 25(2014), No. 3, p. 1348. doi: 10.1007/s10854-014-1733-5
    [19]
    N.S. Zhao, H.Q. Fan, X.H. Ren, J.W. Ma, J. Bao, Y.J. Guo, and Y.Y. Zhou, Dielectric, impedance and piezoelectric properties of (K0.5Nd0.5)TiO3-doped 0.67BiFeO3−0.33BaTiO3 ceramics, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4096. doi: 10.1016/j.jeurceramsoc.2019.06.001
    [20]
    B.B. Yan, H.Q. Fan, C. Wang, M.C. Zhang, A.K. Yadav, X.K. Zheng, H. Wang, and Z.N. Du, Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3−0.06BaTiO3 lead-free ceramics, Ceram. Int., 46(2020), No. 1, p. 281. doi: 10.1016/j.ceramint.2019.08.261
    [21]
    C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer, and A. Loidl, Dielectric spectra and electrical conduction in Fe-doped SrTiO3, Phys. Rev. B, 61(2002), No. 6, p. 3922.
    [22]
    G.Z. Dong, H.Q. Fan, H.L. Tian, J.W. Fang, and Q. Li, Gas-sensing and electrical properties of perovskite structure p-type barium-substituted bismuth ferrite, RSC Adv., 5(2015), No. 38, p. 29618. doi: 10.1039/C5RA01869B
    [23]
    Y.W. Zhao, H.Q. Fan, K. Fu, L.T. Ma, M.M. Li, and J.W. Fang, Intrinsic electric field assisted polymeric graphitic carbon nitride coupled with Bi4Ti3O12/Bi2Ti2O7 heterostructure nanofibers toward enhanced photocatalytic hydrogen evolution, Int. J. Hydrogen Energy, 41(2016), No. 38, p. 16913. doi: 10.1016/j.ijhydene.2016.07.162
    [24]
    X.Y. Mao, W. Wang, and X.B. Chen, Electrical and magnetic properties of Bi5Ti3FeO15 compound prepared by inserting BiFeO3 into Bi4Ti3O12, Solid State Commun., 147(2008), No. 5-6, p. 186. doi: 10.1016/j.ssc.2008.05.025
    [25]
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst., 2(1969), No. 2, p. 65. doi: 10.1107/S0021889869006558
    [26]
    Z.H. Peng, D.X. Yan, Q. Chen, D.Q. Xin, D.Q. Liu, D.Q. Xiao, and J.G. Zhu, Crystal structure, dielectric and piezoelectric properties of Ta/W codoped Bi3TiNbO9 Auriviliius phase ceramics, Curr. Appl. Phys., 14(2014), No. 12, p. 1861. doi: 10.1016/j.cap.2014.10.011
    [27]
    Y. Zhu and A. Chen, Maxwell-Wagner polarization in ceramic composites BaTiO3−Ni0.3Zn0.7Fe2.1O4, J. Appl. Phys., 91(2002), No. 2, p. 794. doi: 10.1063/1.1421033
    [28]
    S. Sen and R.N.P. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics, Mater. Chem. Phys., 87(2004), No. 2-3, p. 256. doi: 10.1016/j.matchemphys.2004.03.005
    [29]
    K.S. Cole and R.H. Cole, Dispersion and absorption in dielectrics I. alternating current characteristics, J. Chem. Phys., 9(1941), No. 4, p. 341. doi: 10.1063/1.1750906
    [30]
    F. Rehman, J.B. Li, J.S. Zhang, M. Rizwan, C. Niu, and H.B. Jin, Grains and grain boundaries contribution to dielectric relaxations and conduction of Bi5Ti3FeO15 ceramics, J. Appl. Phys., 118(2015), No. 21, art. No. 214101. doi: 10.1063/1.4936782
    [31]
    A.K. Biswal, J. Ray, P.D. Babu, V. Siruguri and P.N. Vishwakarma, Dielectric relaxations in La2NiMnO6 with signatures of Griffths phase, J. Appl. Phys., 115(2014), No. 19, p. 194106. doi: 10.1063/1.4876723
    [32]
    A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, and L.C. Costa, Electrical conductivity and ac dielectric properties of La0.8Ca0.2xPbxFeO3 (x = 0.05, 0.10 and 0.15) perovskite compounds, J. Alloys Compd., 653(2015), p. 506. doi: 10.1016/j.jallcom.2015.09.018
    [33]
    A.H. Dhahri, E. Dhahri, and E.K. Hlil, Electrical conductivity and dielectric behaviour of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3, RSC Adv., 8(2018), No. 17, p. 9103. doi: 10.1039/C8RA00037A
    [34]
    T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, and S. Anwar, Frequency and temperature dependence dielectric study of strontium modified Barium Zirconium Titanate ceramics obtained by mechanochemical synthesis, J. Mater. Sci. Mater. Electron., 26(2015), No. 5, p. 3069. doi: 10.1007/s10854-015-2799-4
    [35]
    D.C. Sinclair and A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance, J. Appl. Phys., 66(1989), No. 8, p. 3850. doi: 10.1063/1.344049
    [36]
    R.J. Tang, C. Jiang, W.H. Qian, J. Jian, X. Zhang, H.Y. Wang, and H. Yang, Dielectric relaxation, resonance, and scaling behaviors in Sr3Co2Fe24O41 hexaferrite, Sci. Rep., 5(2015), art. No. 13645. doi: 10.1038/srep13645
    [37]
    M.M. Hoque, A. Dutta, S. Kumar, and T.P. Sinha, Dielectric relaxation and conductivity of Ba (Mg1/3Ta2/3) O3 and Ba (Zn1/3Ta2/3) O3, J. Mater. Sci. Technol., 30(2014), No. 4, p. 311. doi: 10.1016/j.jmst.2013.10.021
    [38]
    K. Funke, Jump relaxation in solid electrolytes, Prog. Solid State Chem., 22(1993), No. 2, p. 111. doi: 10.1016/0079-6786(93)90002-9
    [39]
    E. Barsoukov and J.R. Macdonald, Impedance Spectroscopy Theory, Experiment and Applications, 2nd Ed., Wiley Interscience, New York, 2005, p. 14.
    [40]
    N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumdar, and R.S. Katiyar, Impedance spectroscopy of multiferroic PbZnxTi1xO3/CoFe2O4 layered thin films, Phys. Rev. B, 77(2008), No. 1, art. No. 014111. doi: 10.1103/PhysRevB.77.014111
    [41]
    A.K. Jonscher, The ‘universal’ dielectric response, Nature, 267(1977), No. 5613, p. 673. doi: 10.1038/267673a0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(4067) PDF Downloads(62) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return