Muntadher I. Rahmah, Raad S. Sabry, and Wisam J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composite with superhydrophobicity, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2096-y
Cite this article as:
Muntadher I. Rahmah, Raad S. Sabry, and Wisam J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composite with superhydrophobicity, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2096-y
Muntadher I. Rahmah, Raad S. Sabry, and Wisam J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composite with superhydrophobicity, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2096-y
Citation:
Muntadher I. Rahmah, Raad S. Sabry, and Wisam J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composite with superhydrophobicity, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2096-y
A facile approach was developed to construct Fe2O3-modified ZnO micro/nanostructures with excellent superhydrophobicity and photocatalytic activity. The impacts of stearic acid (SA) and Fe2O3-modified on the morphology, water contact angle (WCA) and photocatalytic degradation were investigated. The superhydrophobic results showed increased of WCA from 144 ± 2° to 154 ± 2° when SA weight increase from 5 mg to 20 mg due to formation of hierarchical or rough structure. Furthermore, Fe2O3-modified ZnO micro/nanostructures surface before and after treatment with SA (20 mg) chosen to evaluate the photocatalytic of Methylene blue (MB) dye by supporting visible-light. The results showed degradation of MB after 80 min of irradiation with photodegradation efficiency 91.5% for superhydrophobic state and 92% for the hydrophilic state. This improvement in photocatalytic activity at both states may be attributable to an increase of surface area and improve charge carriers separation.