Cite this article as:

Research Article

Comprehensive analysis of pulsed plasma nitriding pre-conditions on fatigue behavior of AISI 304 austenitic stainless steel

+ Author Affiliations
  • Received: 26 December 2019Revised: 30 March 2020Accepted: 11 May 2020Available online: 13 May 2020
  • In this study, the aim is to draw the exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions. The treatment is applied to AISI 304 austenitic stainless steel at different temperature and durations. The nitrided depth increases with increasing the process temperature and duration. Remarkable increase is observed on the nitrided depth for the conditions of 4750C-8h and 5500C-4h. The austenite structure is transformed into metastable nitrogen oversaturated S-phase for the lower temperature of plasma nitriding. S-phase is converted to CrN precipitation within the conditions of 4750C-8h and 5500C-4h. Plasma nitriding achieves the surface hardness and fatigue limit increase regardless of the condition. The best performance for surface hardness and fatigue limit is obtained with 5500C-4h due to the existence of CrN precipitation.
  • 加载中
  •  

  • [1] A. Albedah,B. Bachir Bouiadjra,S.M.A.K. Mohammed, and F. Benyahia, Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1896-4
    [2] Mehmet Akif Erden and Fatih Aydin, The investigation of wear and mechanical properties of carburized AISI 8620 steel by powder metallurgy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2046-8
    [3] K. Bin Tayyab,Ameeq Farooq,A. Ahmed Alvi,Abdul Basit Nadeem, and K.M. Deen, Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9% NaCl solution, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2054-8
    [4] Yan-yun Bai,Jin Gao,Tao Guo,Ke-wei Gao,Alex A. Volinsky, and Xiao-lu Pang, Review of hard coating-ductile substrate fatigue behavior, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2203-0
    [5] Chao Pan,Xiao-jun Hu,Jian-chao Zheng,Ping Lin, and Kuo-chih Chou, Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1981-8
    [6] Mohsen Hajizadeh,Sajjad Emami, and Tohid Saeid, Influence of welding speed on microstructure formation in friction-stir-welded 304 austenitic stainless steels, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2001-8
    [7] Mehdi Shaban Ghazani and Beitallah Eghbali, Investigation on the strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel , Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2163-4
    [8] Hong-liang Xiang, Yu-rui Hu, Hua-tang Cao, Dong Liu, and  Xuan-pu Dong, Erosion-corrosion behavior of SAF3207 hyper-duplex stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1825-6
    [9] Chao Gu, Yan-ping Bao, Peng Gan, Min Wang, and  Jin-shan He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1609-4
    [10] Ying Yan, Li-jia Chen, Guo-qiang Zhang, Dong Han, and  Xiao-wu Li, Variation of the uniaxial tensile behavior of ultrafine-grained pure aluminum after cyclic pre-deformation, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1613-8
    [11] Yong Li, Min-dong Chen, Jian-kuan Li, Long-fei Song, Xin Zhang, and  Zhi-yong Liu, Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1626-3
    [12] Masoud Sabzi, Sadegh Moeini Far, and  Saeid Mersagh Dezfuli, Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1697-1
    [13] Prashant Huilgol, K. Rajendra Udupa, and  K. Udaya Bhat, Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1562-2
    [14] Zhen-hua Wang, Jian-jun Qi, and  Wan-tang Fu, Effects of initial grain size and strain on grain boundary engineering of high-nitrogen CrMn austenitic stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1641-4
    [15] Sayed Ghafar Hashemi B. Eghbali, Analysis of the formation conditions and characteristics of interphase and random vanadium precipitation in a low-carbon steel during isothermal heat treatment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1577-8
    [16] Hamed Jamshidi Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1682-8
    [17] S. Tanhaei, Kh. Gheisari, and  S. R. Alavi Zaree, Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1610-y
    [18] Yan Zeng, Peng-peng Zuo, Xiao-chun Wu, and  Shu-wen Xia, Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1489-z
    [19] Se-fei Yang, Ying Wen, Pan Yi, Kui Xiao, and  Chao-fang Dong, Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1518-y
    [20] Jin-tao Shi, Long-gang Hou, Jin-rong Zuo, Lin-zhong Zhuang, and  Ji-shan Zhang, Effect of cryogenic rolling and annealing on the microstructure evolution and mechanical properties of 304 stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1446-x
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(690) PDF downloads(18) Cited by()

Proportional views

Comprehensive analysis of pulsed plasma nitriding pre-conditions on fatigue behavior of AISI 304 austenitic stainless steel

  • Corresponding author:

    Okan Unal    E-mail: unalokan78@gmail.com

  • 1. Mechanical Engineering Department, Karabuk University, Karabuk, 78050, Turkey
  • 2. Modern Surface Engineering Laboratory (MSELAB), Karabuk University, Karabuk, 78050, Turkey
  • 3. Mechanical Engineering Department, Sharif University of Technology-International Campus, Kish Island, Iran
  • 4. Mechanical Engineering Department, Suleyman Demirel University, Isparta, 32200, Turkey

Abstract: In this study, the aim is to draw the exact boundary for microstructural and mechanical behaviors in terms of pulsed plasma nitriding conditions. The treatment is applied to AISI 304 austenitic stainless steel at different temperature and durations. The nitrided depth increases with increasing the process temperature and duration. Remarkable increase is observed on the nitrided depth for the conditions of 4750C-8h and 5500C-4h. The austenite structure is transformed into metastable nitrogen oversaturated S-phase for the lower temperature of plasma nitriding. S-phase is converted to CrN precipitation within the conditions of 4750C-8h and 5500C-4h. Plasma nitriding achieves the surface hardness and fatigue limit increase regardless of the condition. The best performance for surface hardness and fatigue limit is obtained with 5500C-4h due to the existence of CrN precipitation.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return