Cite this article as:

Research Article

Fabrication and characterization of GNPs and CNTs reinforced Al7075 matrix composites through stir casting process

+ Author Affiliations
  • Received: 31 December 2019Revised: 12 May 2020Accepted: 15 May 2020Available online: 17 May 2020
  • In the present research, effect of graphene nanoplates (GNPs) and carbon nanotubes (CNTs) addition into the Al7075 matrix through the stir casting method on the microstructure and mechanical properties of fabricated composites was investigated. XRD results represented that by addition of reinforcements into Al7075, the dominant crystal orientation changed from a weak (002) to a strong (111). By increasing of reinforcements, the fraction of porosity increased and among the two mentioned reinforcements, addition of GNPs in to the Al7075 matrix led to create a higher fraction of porosity. Addition of reinforcements into Al7075 matrix owing to agglomeration of reinforcements and formation of porosities did not change the experimental Yield strength (YS) considerably. Theoretical calculations to determine the contributions of strengthening mechanisms in the enhancement of YS revealed that by addition of reinforcements, the grain size of matrix did not decrease, so Hall-Petch was not activated. By addition of self-lubricant GNPs and CNTs into the matrix, the wear rate values decreased and the lowest friction coefficient and the highest wear resistance belonged to Al7075/0.53 wt. % CNTs. In Al7075/GNPs, the dominant mechanisms were adhesion and delamination and a little abrasive occurred.
  • 加载中
  •  

  • [1] Ping-hu Chen,Yun Zhang,Rui-qing Li,Yan-xing Liu, and Song-sheng Zeng, Influence of carbon-partitioning treatment on the microstructure, mechanical properties and wear resistance of in situ VCp-reinforced Fe-matrix composite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1909-3
    [2] Hui-min Xia,Lan Zhang,Yong-chao Zhu,Na Li,Yu-qi Sun,Ji-dong Zhang, and Hui-zhong Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2009-0
    [3] Majid Hosseini and Mohammad Hossein Paydar, Fabrication of phosphor bronze/Al two-phase material by recycling phosphor bronze chips using hot extrusion process and investigation of their microstructural and mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1980-9
    [4] Jin-long Su,Jie Teng,Zi-li Xu, and Yuan Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1987-2
    [5] Zheng Lü,Chang-hui Mao,Jian Wang,Qiu-shi Liang,Shu-wang Ma, and Wen-jing Wang, Formation of interfacial Al−Ce−Cu−W amorphous layers in aluminum matrix composite through thermally driven solid-state amorphization, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1952-0
    [6] Shahab Shahsavar,Mostafa Ketabchi, and Saeed Bagherzadeh, Fabrication of robust aluminum–carbon nanotube composites using ultrasonic assembly and rolling process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1969-4
    [7] Yong-fa Zhu,Wu-bian Tian,Dan-dan Wang,Heng Zhang,Jian-xiang Ding,Pei-gen Zhang, and Zheng-ming Sun, Fabrication and properties of silver-based composites reinforced with carbon-coated Ti3AlC2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2064-6
    [8] Richard Espiritu and  Alberto Amorsolo Jr., Fabrication and characterization of Cu-Zn-Sn shape memory alloys via an electrodeposition-annealing route, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1886-6
    [9] Sergei Galyshev, Andrew Gomzin, Rida Gallyamova, Igor Khodos, and  Fanil Musin, On the liquid-phase technology of carbon fiber/aluminum matrix composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1877-7
    [10] Seyed Esmaiel Shakib, Ramin Raiszadeh, and  Jalil Vahdati-Khaki, A Self-propagating high-temperature synthesis process for the fabrication of Fe(Cr)-Al2O3 nanocomposite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1779-8
    [11] Ze-cheng Hou, Lun-qiao Xiong, Yuan-feng Liu, Lin Zhu, and  Wen-zhen Li, Preparation of super-aligned carbon nanotube-reinforced nickel-matrix laminar composites with excellent mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1717-9
    [12] Chen-yang Huang, Shui-ping Hu, and  Kai Chen, Influence of rolling temperature on the interfaces and mechanical performance of graphene-reinforced aluminum-matrix composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1780-2
    [13] Mi-qi Wang, Ze-hua Zhou, Lin-tao Wu, Ying Ding, and  Ze-hua Wang, Characterization and in-situ formation mechanism of tungsten carbide reinforced Fe-based alloy coating by plasma cladding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1589-4
    [14] Miao Wang, Wen-xian Wang, Hong-sheng Chen, and  Yu-li Li, Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1580-0
    [15] Zeeshan Baig, Othman Mamat, Mazli Mustapha, Asad Mumtaz, Sadaqat Ali, and  Mansoor Sarfraz, Surfactant-decorated graphite nanoplatelets (GNPs) reinforced aluminum nanocomposites: sintering effects on hardness and wear, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1618-3
    [16] Dong-tao Wang, Hai-tao Zhang, Lei Li, Hai-lin Wu, Ke Qin, and  Jian-zhong Cui, The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al-Mg2Si in situ composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1659-7
    [17] Ali Shabani, Mohammad Reza Toroghinejad, and  Alireza Bagheri, Effects of intermediate Ni layer on mechanical properties of Al–Cu layered composites fabricated through cold roll bonding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1604-9
    [18] Xiang Zeng, Jie Teng, Jin-gang Yu, Ao-shuang Tan, Ding-fa Fu, and  Hui Zhang, Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1552-4
    [19] Ping-hu Chen, Yi-bo Li, Rui-qing Li, Ri-peng Jiang, Song-sheng Zeng, and  Xiao-qian Li, Microstructure, mechanical properties, and wear resistance of VCp-reinforced Fe-matrix composites treated by Q&P process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1657-9
    [20] K. Sanesh, S. Shiam Sunder, and  N. Radhika, Effect of reinforcement content on the adhesive wear behavior of Cu10Sn5Ni/Si3N4 composites produced by stir casting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1495-1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(694) PDF downloads(9) Cited by()

Proportional views

Fabrication and characterization of GNPs and CNTs reinforced Al7075 matrix composites through stir casting process

  • Corresponding author:

    Beitallah Eghbali    E-mail: eghbali@sut.ac.ir

  • Faculty of Materials Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran

Abstract: In the present research, effect of graphene nanoplates (GNPs) and carbon nanotubes (CNTs) addition into the Al7075 matrix through the stir casting method on the microstructure and mechanical properties of fabricated composites was investigated. XRD results represented that by addition of reinforcements into Al7075, the dominant crystal orientation changed from a weak (002) to a strong (111). By increasing of reinforcements, the fraction of porosity increased and among the two mentioned reinforcements, addition of GNPs in to the Al7075 matrix led to create a higher fraction of porosity. Addition of reinforcements into Al7075 matrix owing to agglomeration of reinforcements and formation of porosities did not change the experimental Yield strength (YS) considerably. Theoretical calculations to determine the contributions of strengthening mechanisms in the enhancement of YS revealed that by addition of reinforcements, the grain size of matrix did not decrease, so Hall-Petch was not activated. By addition of self-lubricant GNPs and CNTs into the matrix, the wear rate values decreased and the lowest friction coefficient and the highest wear resistance belonged to Al7075/0.53 wt. % CNTs. In Al7075/GNPs, the dominant mechanisms were adhesion and delamination and a little abrasive occurred.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return