Cite this article as:

Research Article

Reduction of NOx emission based on optimizing the proportions of mill scale and coke breeze during sintering process

+ Author Affiliations
  • Received: 4 March 2020Revised: 18 May 2020Accepted: 19 May 2020Available online: 21 May 2020
  • How to cost-effectively reduce NOx emission of iron ore sintering process is a new challenge for iron and steel industry at present. The effects of proportion of mill scale and coke breeze on the NOx emission, strength of sinter and sinter indexes were studied by combustion tests and sinter pot tests. Results showed that the fuel-N’s conversion rate decreased with increasing of the proportions of mill scale. Because NO was reduced to N2 by Fe3O4, FeO and Fe in mill scale. The strength of sinter reached a highest value at 8.0 wt% mill scale due to the formation of low melting point minerals. Meanwhile, the fuel-N’s conversion rate slightly increased and total NOx emission significantly decreased with the proportions of coke breeze increased. Because CO formation and contents of N element in sintered mixture decreased. However, the strength of sinter was also decreased since the decreasing of the melting minerals. In addition, results of sinter pot tests indicated that NOx emission obviousely decreased and sinter indexes have good performances when the proportions of mill scale and coke breeze were 8.0 wt% and 3.70 wt% in sintered mixture.
  • 加载中
  •  

  • [1] Yong-xing Zheng,Jilai Ning,Wei Liu,Pan-jin Hu,Jin-fang Lü, and Jie Pang, Reaction behaviors of Pb and Zn sulfates during reduction roasting of Zn leaching residue and flotation of artificial sulfide minerals, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2029-9
    [2] Yi Li, Ming-zhe Li, and  Kai Liu, Influence of a multi-step process on the thickness reduction error of sheet metal in a flexible rolling process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1711-2
    [3] Qing Yuan, Guang Xu, Wei-cheng Liang, Bei He, and  Ming-xing Zhou, Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1559-x
    [4] Yi-hong Li, Yan-ping Bao, Rui Wang, Li-feng Ma, and  Jian-sheng Liu, Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1558-y
    [5] N. Bayat, G. R. Ebrahimi, A. Momeni, and  H. R. Ezatpour, Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1561-3
    [6] Cong Feng, Man-sheng Chu, Jue Tang, and  Zheng-gen Liu, Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1608-5
    [7] Mostafa Amirjan and  Mansour Bozorg, Properties and corrosion behavior of Al based nanocomposite foams produced by the sintering-dissolution process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1551-5
    [8] Yi-min Zhang, Ling-yun Yi, Li-na Wang, De-sheng Chen, Wei-jing Wang, Ya-hui Liu, Hong-xin Zhao, and  Tao Qi, A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite:sodium modification-direct reduction coupled process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1431-4
    [9] Lei Tian, Yan Liu, Jun-jie Tang, Guo-zhi Lü, and  Ting-an Zhang, Variation law of gas holdup in an autoclave during the pressure leaching process by using a mixed-flow agitator, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1473-7
    [10] Dong-hui Liu, Hao Liu, Jian-liang Zhang, Zheng-jian Liu, Xun Xue, Guang-wei Wang, and  Qing-feng Kang, Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1487-1
    [11] Ri-jin Cheng, Hong-wei Ni, Hua Zhang, Xiao-kun Zhang, and  Si-cheng Bai, Mechanism research on arsenic removal from arsenopyrite ore during a sintering process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1414-5
    [12] Jin-jie Shi and  Jing Ming, Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1379-4
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1154) PDF downloads(13) Cited by()

Proportional views

Reduction of NOx emission based on optimizing the proportions of mill scale and coke breeze during sintering process

  • Corresponding author:

    Zhi-gang Que    E-mail: quezhigang@126.com

  • 1. Institute of Energy Conversion, Jiangxi Academy of Science, Nanchang 330096, China
  • 2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract: How to cost-effectively reduce NOx emission of iron ore sintering process is a new challenge for iron and steel industry at present. The effects of proportion of mill scale and coke breeze on the NOx emission, strength of sinter and sinter indexes were studied by combustion tests and sinter pot tests. Results showed that the fuel-N’s conversion rate decreased with increasing of the proportions of mill scale. Because NO was reduced to N2 by Fe3O4, FeO and Fe in mill scale. The strength of sinter reached a highest value at 8.0 wt% mill scale due to the formation of low melting point minerals. Meanwhile, the fuel-N’s conversion rate slightly increased and total NOx emission significantly decreased with the proportions of coke breeze increased. Because CO formation and contents of N element in sintered mixture decreased. However, the strength of sinter was also decreased since the decreasing of the melting minerals. In addition, results of sinter pot tests indicated that NOx emission obviousely decreased and sinter indexes have good performances when the proportions of mill scale and coke breeze were 8.0 wt% and 3.70 wt% in sintered mixture.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return