Cite this article as:

Research Article

Microemulsion leaching of vanadium from sodium roasted vanadium slag by fusion of leaching and extraction processes

+ Author Affiliations
  • Received: 5 May 2020Revised: 21 May 2020Accepted: 22 May 2020Available online: 24 May 2020
  • In this work, the fusion of leaching and purification steps is realized by directly using microemulsion as the leaching agent. The DEHPA/n-heptane/NaOH microemulsion system has been established to directly leach vanadates from sodium roasted vanadium slag. The effect of leaching arguments on the leaching efficiency is investigated, including the molar ratio of H2O/NaDEHP (W), the DEHPA concentration of, solid/liquid ratio, stirring time, and leaching temperature. In optimal situations, the vanadium leaching efficiency could attain 79.57%. Both the XRD characterization of the leaching residue and the Raman spectrum of the microemulsion before and after leaching demonstrate the successful entrance of vanadates from sodium roasted vanadium slag into the microemulsion. The proposed method has realized the leaching and purification of vanadates in one step, which significantly reduces the production cost and environmental pollution. It affords new ways of thinking about the greener recovery of valuable metals from solid resources.
  • 加载中
  •  

  • [1] F. Maddah,M. Alitabar, and H. Yoozbashizadeh, Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1974-7
    [2] Elham Hosseini, Fereshteh Rashchi, and  Abolghasem Ataie, Ti leaching from activated ilmenite-Fe mixture at different milling energy levels, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1679-3
    [3] Ying-bo Dong, Yue Liu, and  Hai Lin, Leaching behavior of V, Pb, Cd, Cr, and As from stone coal waste rock with different particle sizes, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1635-2
    [4] Bo-na Deng, Guang-hui Li, Jun Luo, Jing-hua Zeng, Ming-jun Rao, Zhi-wei Peng, and  Tao Jiang, Alkaline digestion behavior and alumina extraction from sodium aluminosilicate generated in pyrometallurgical process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1692-6
    [5] Xin Wang, Hai Lin, Ying-bo Dong, and  Gan-yu Li, Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1568-9
    [6] Cong Feng, Man-sheng Chu, Jue Tang, and  Zheng-gen Liu, Effects of smelting parameters on the slag/metal separation behaviors of Hongge vanadium-bearing titanomagnetite metallized pellets obtained from the gas-based direct reduction process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1608-5
    [7] Yi-min Zhang, Li-na Wang, De-sheng Chen, Wei-jing Wang, Ya-hui Liu, Hong-xin Zhao, and  Tao Qi, A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1556-0
    [8] Jing Wen, Tao Jiang, Mi Zhou, Hui-yang Gao, Jia-yi Liu, and  Xiang-xin Xue, Roasting and leaching behaviors of vanadium and chromium in calcification roasting–acid leaching of high-chromium vanadium slag, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1598-3
    [9] Ping Xue, Guang-qiang Li, Yong-xiang Yang, Qin-wei Qin, and  Ming-xing Wei, Recovery of valuable metals from waste diamond cutters through ammonia-ammonium sulfate leaching, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1527-x
    [10] Cong Xu, Hong-wei Cheng, Guang-shi Li, Chang-yuan Lu, Xiong-gang Lu, Xing-li Zou, and  Qian Xu, Extraction of metals from complex sulfide nickel concentrates by low-temperature chlorination roasting and water leaching, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1417-2
    [11] Yi-min Zhang, Ling-yun Yi, Li-na Wang, De-sheng Chen, Wei-jing Wang, Ya-hui Liu, Hong-xin Zhao, and  Tao Qi, A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite:sodium modification-direct reduction coupled process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1431-4
    [12] Jing-peng Wang, Yi-min Zhang, Jing Huang, and  Tao Liu, Synergistic effect of microwave irradiation and CaF2 on vanadium leaching, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1390-9
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1159) PDF downloads(17) Cited by()

Proportional views

Microemulsion leaching of vanadium from sodium roasted vanadium slag by fusion of leaching and extraction processes

  • Corresponding author:

    Hong-yi Li    E-mail: hongyi.li@cqu.edu.cn

  • 1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
  • 2. Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, China

Abstract: In this work, the fusion of leaching and purification steps is realized by directly using microemulsion as the leaching agent. The DEHPA/n-heptane/NaOH microemulsion system has been established to directly leach vanadates from sodium roasted vanadium slag. The effect of leaching arguments on the leaching efficiency is investigated, including the molar ratio of H2O/NaDEHP (W), the DEHPA concentration of, solid/liquid ratio, stirring time, and leaching temperature. In optimal situations, the vanadium leaching efficiency could attain 79.57%. Both the XRD characterization of the leaching residue and the Raman spectrum of the microemulsion before and after leaching demonstrate the successful entrance of vanadates from sodium roasted vanadium slag into the microemulsion. The proposed method has realized the leaching and purification of vanadates in one step, which significantly reduces the production cost and environmental pollution. It affords new ways of thinking about the greener recovery of valuable metals from solid resources.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return