Cite this article as:

Research Article

Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings

+ Author Affiliations
  • Received: 12 February 2020Revised: 4 May 2020Accepted: 25 May 2020Available online: 27 May 2020
  • Abstract: X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry, differential scanning calorimetry and mass spectrometry have been used to study the products of nickel-containing pyrrhotite tailings oxidation by the oxygen in the air. The kinetic triplets of oxidation, such as activation energy (Ea), pre-exponential factor (A) and reaction model (f(α)) being a function of the conversion degree (α), were adjusted by the regression analysis. In case of a two-stage process representation, the first step proceeds under autocatalysis control and ends at α = 0.42. The kinetic triplet of the first step can be presented as Ea = 262.2 kJ/mol, lgA = 14.53 s-1, f(α) = (1 – α)4.11(1 + 1.51·10–4α). For the second step, the process is controlled by the two-dimensional diffusion of the reactants in the layer of oxidation products. The kinetic triplet of the second step: Еa = 215.0 kJ/mol, lgA = 10.28 s-1, f(α) = (–ln(1 – α))–1. The obtained empirical formulae for the rate of pyrrhotite tailings oxidation reliably describe the macro-mechanism of the process and can be used to design automatization systems for roasting these materials.
  • 加载中
  •  

  • [1] Ya Wei,Yu Fu,Zhi-min Pan,Yi-chong Ma,Hong-xu Cheng,Qian-cheng Zhao,Hong Luo, and Xiao-gang Li, Study on influencing factors and mechanism of high-temperature oxidation of high-entropy alloy:A review, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-021-2257-7
    [2] Xiong Chen, Guo-hua Gu, Li-juan Li, and  Ren-feng Zhu, The selective effect of food-grade guar gum on chalcopyrite-monoclinic pyrrhotite separation using mixed aerofloat (CSU11) as collector, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1663-y
    [3] Wei Li, Nan Wang, Gui-qin Fu, Man-sheng Chu, and  Miao-yong Zhu, Effect of Cr2O3 addition on the oxidation induration mechanism of Hongge vanadium titanomagnetite pellets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1583-x
    [4] Qing Yuan, Guang Xu, Wei-cheng Liang, Bei He, and  Ming-xing Zhou, Effects of oxygen content on the oxidation process of Si-containing steel during anisothermal heating, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1559-x
    [5] Zhi-yuan Chen, Liu-zhen Bian, Zi-you Yu, Li-jun Wang, Fu-shen Li, and  Kuo-Chih Chou, Effects of specific surface area of metallic nickel particles on carbon deposition kinetics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1565-z
    [6] Han-quan Zhang and  Jin-tao Fu, Oxidation behavior of artificial magnetite pellets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1442-1
    [7] Zhi-yuan Chen, Liu-zhen Bian, Li-jun Wang, Zi-you Yu, Hai-lei Zhao, Fu-shen Li, and  Kuo-chih Chou, Topography, structure, and formation kinetic mechanism of carbon deposited onto nickel in the temperature range from 400 to 850℃, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1439-9
    [8] Qian Li, Fang-zhou Ji, Bin Xu, Jian-jun Hu, Yong-bin Yang, and  Tao Jiang, Consolidation mechanism of gold concentrates containing sulfur and carbon during oxygen-enriched air roasting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1418-1
    [9] Xiao-dong Hao, Yi-li Liang, Hua-qun Yin, Hong-wei Liu, Wei-min Zeng, and  Xue-duan Liu, Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1415-4
    [10] Aref Sardari, Eskandar Keshavarz Alamdari, Mohammad Noaparast, and  Sied Ziaedin Shafaei, Kinetics of magnetite oxidation under non-isothermal conditions, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1429-y
    [11] Zhi-yuan Zhu, Yuan-fei Cai, You-jun Gong, Guo-ping Shen, Yu-guo Tu, and  Guo-fu Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000℃, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1461-y
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1419) PDF downloads(13) Cited by()

Proportional views

Kinetics and mechanism of oxidation for nickel-containing pyrrhotite tailings

  • Corresponding author:

    Alexander M. Klyushnikov    E-mail: amk8@mail.com

  • Institute of metallurgy of the Ural branch of the Russian Academy of Sciences, Yekaterinburg 620016, Russia

Abstract: Abstract: X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetry, differential scanning calorimetry and mass spectrometry have been used to study the products of nickel-containing pyrrhotite tailings oxidation by the oxygen in the air. The kinetic triplets of oxidation, such as activation energy (Ea), pre-exponential factor (A) and reaction model (f(α)) being a function of the conversion degree (α), were adjusted by the regression analysis. In case of a two-stage process representation, the first step proceeds under autocatalysis control and ends at α = 0.42. The kinetic triplet of the first step can be presented as Ea = 262.2 kJ/mol, lgA = 14.53 s-1, f(α) = (1 – α)4.11(1 + 1.51·10–4α). For the second step, the process is controlled by the two-dimensional diffusion of the reactants in the layer of oxidation products. The kinetic triplet of the second step: Еa = 215.0 kJ/mol, lgA = 10.28 s-1, f(α) = (–ln(1 – α))–1. The obtained empirical formulae for the rate of pyrrhotite tailings oxidation reliably describe the macro-mechanism of the process and can be used to design automatization systems for roasting these materials.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return