Cite this article as:

Research Article

Preparation of Al2O3 SiO2 composite aerogels and their preliminary Cu2+ absorption properties

+ Author Affiliations
  • Received: 11 November 2019Revised: 30 May 2020Accepted: 1 June 2020Available online: 3 June 2020
  • To remediate heavy metal ions, an Al2O3-SiO2 composite aerogel is prepared via a sol-gel and an organic solvent sublimation drying (Sol-Gel-OSSD) method. XRD and FTIR suggested that the aerogel is composed of mainly Al2O3 and minor SiO2. It has high specific surface areas (~827 m2/g) and high porosities (~90%) with pore diameters at ~20 nm. It microstructures showed that the distribution of Al, Si and O is homogeneous. The aerogel can remove ~99% Cu2+ within ~40 min and reach its equilibrium uptake afterwards (~69 mg/g). Preliminary calculations show that the Cu2+ uptake by the aerogel follows kinetics of the pseudo second order where chemical sorption may take effects owing largely to the high surface areas, high porosity, and abundant functional groups in the aerogel network such as Al-OH and Si-OH. This aerogel may afford an efficient absorbent for removing Cu2+ ions.
  • 加载中
  •  

  • [1] Muntadher I. Rahmah,Raad S. Sabry, and Wisam J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composite with superhydrophobicity, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2096-y
    [2] Chen-yang Xu,Cui Wang,Ren-ze Xu,Jian-liang Zhang, and Ke-xin Jiao, Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2187-9
    [3] Franco Mayanglambam and Mark Russell, Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni–P/fly ash and Ni–P/SiO2–Al2O3), Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2071-7
    [4] Guo-xing Ren,Song-wen Xiao,Cai-bin Liao, and Zhi-hong Liu, The activity coefficient of nickel oxide in SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623K, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2205-y
    [5] Jing Guo,Xing-run Chen,Shao-wei Han,Yan Yan, and Han-jie Guo, Evolution of plasticized MnO–Al2O3–SiO2-based nonmetallic inclusion in 18wt%Cr‒8wt%Ni stainless steel and its properties during soaking process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1945-z
    [6] Qi-qiang Mou, Jian-li Li, Qiang Zeng, and  Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1822-9
    [7] Betül Kafkaslıoğlu Yıldız, Hüseyin Yılmaz, and  Yahya Kemal Tür, Influence of nickel addition on the microstructure and mechanical properties of Al2O3-5vol%ZrO2 ceramic composites prepared via precipitation method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1792-y
    [8] Saeid Mersagh Dezfuli, Ali Shanaghi, and  Saeid Baghshahi, Effect of Al2O3 and Y2O3 on the corrosion behavior of ZrO2-benzotriazole nanostructured coatings applied on AA2024 via a sol-gel method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1688-2
    [9] Yu Li, Li-hua Zhao, Ya-kun Wang, and  Da-qiang Cang, Effects of Fe2O3 on the properties of ceramics from steel slag, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1586-7
    [10] S. M. A. Haghi, S. A. Sajjadi, and  A. Babakhani, In-situ fabrication of Al(Zn)-Al2O3 graded composite using the aluminothermic reaction during hot pressing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1632-5
    [11] Hui Xu, Gong-zhen Zhang, Wei Cui, Shu-bin Ren, Qian-jin Wang, and  Xuan-hui Qu, Effect of Al2O3sf addition on the friction and wear properties of (SiCp+Al2O3sf)/Al2024 composites fabricated by pressure infiltration, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1581-z
    [12] Peng Jiang, Guo-xiang Yin, Ming-wei Yan, Jia-lin Sun, Bin Li, and  Yong Li, A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase:synthesis and physical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1412-7
    [13] Xiu-ying Ni, Jun Zhao, Jia-lin Sun, Feng Gong, and  Zuo-li Li, Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1466-6
    [14] Jian-bin Zhu and  Hong Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1409-2
    [15] Mohammad Baghani, Mahmood Aliofkhazraei, and  Mehdi Askari, Cu-Zn-Al2O3 nanocomposites:study of microstructure,corrosion,and wear properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1427-0
    [16] Jian-fang Lü, Zhe-nan Jin, Hong-ying Yang, Lin-lin Tong, Guo-bao Chen, and  Fa-xin Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1459-5
    [17] Mohammad Baghani and  Mahmood Aliofkhazraei, CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1524-0
    [18] Zuo-li Li, Jun Zhao, Jia-lin Sun, Feng Gong, and  Xiu-ying Ni, Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1533-z
    [19] Yi-fan Zhang, Zhen Ji, Ke Chen, Cheng-chang Jia, Shan-wu Yang, and  Meng-ya Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1398-1
    [20] Peng Zhou, Jun-hong Chen, Meng Liu, Peng Jiang, Bin Li, and  Xin-mei Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2-18 GHz range, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1464-8
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(680) PDF downloads(6) Cited by()

Proportional views

Preparation of Al2O3 SiO2 composite aerogels and their preliminary Cu2+ absorption properties

  • Corresponding author:

    Xiao-guang Liu    E-mail: liuxg@ustb.edu.cn

  • 1. Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 2. Fundamental Experimental Centre of Nature Science, University of Science and Technology Beijing, Beijing 100083, China

Abstract: To remediate heavy metal ions, an Al2O3-SiO2 composite aerogel is prepared via a sol-gel and an organic solvent sublimation drying (Sol-Gel-OSSD) method. XRD and FTIR suggested that the aerogel is composed of mainly Al2O3 and minor SiO2. It has high specific surface areas (~827 m2/g) and high porosities (~90%) with pore diameters at ~20 nm. It microstructures showed that the distribution of Al, Si and O is homogeneous. The aerogel can remove ~99% Cu2+ within ~40 min and reach its equilibrium uptake afterwards (~69 mg/g). Preliminary calculations show that the Cu2+ uptake by the aerogel follows kinetics of the pseudo second order where chemical sorption may take effects owing largely to the high surface areas, high porosity, and abundant functional groups in the aerogel network such as Al-OH and Si-OH. This aerogel may afford an efficient absorbent for removing Cu2+ ions.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return