Xiao-guang Liu, Qiu-shuo Mao, Yue Jiang, Yan Li, Jia-lin Sun, and Fei-xue Huang, Preparation of Al2O3–SiO2 composite aerogels and their Cu2+ absorption properties, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 317-324. https://doi.org/10.1007/s12613-020-2111-3
Cite this article as:
Xiao-guang Liu, Qiu-shuo Mao, Yue Jiang, Yan Li, Jia-lin Sun, and Fei-xue Huang, Preparation of Al2O3–SiO2 composite aerogels and their Cu2+ absorption properties, Int. J. Miner. Metall. Mater., 28(2021), No. 2, pp. 317-324. https://doi.org/10.1007/s12613-020-2111-3
Research Article

Preparation of Al2O3–SiO2 composite aerogels and their Cu2+ absorption properties

+ Author Affiliations
  • Corresponding author:

    Xiao-guang Liu    E-mail: liuxg@ustb.edu.cn

  • Received: 11 November 2019Revised: 30 May 2020Accepted: 1 June 2020Available online: 3 June 2020
  • In order to remediate heavy metal ions from waste water, Al2O3–SiO2 composite aerogels are prepared via a sol–gel and an organic solvent sublimation drying method. Various characterisation techniques have been employed including X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanning electron microscope (SEM), Energy-dispersion X-ray spectroscopy (EDX), Brunauer–Emmett–Teller (BET) N2 adsoprtion isotherm, and atomic absorption spectrometer (AAS). XRD and FTIR suggest that the aerogels are composed of mainly Al2O3 and minor SiO2. They have a high specific surface area (827.544 m2/g) and high porosity (86.0%) with a pore diameter of ~20 nm. Their microstructures show that the distribution of Al, Si, and O is homogeneous. The aerogels can remove ~99% Cu2+ within ~40 min and then reach the equilibrium uptake (~69 mg/g). Preliminary calculations show that the Cu2+ uptake by the aerogels follows pseudo second-order kinetics where chemical sorption may take effect owing largely to the high surface area, high porosity, and abundant functional groups, such as Al–OH and Si–OH, in the aerogel network. The prepared aerogels may serve as efficient absorbents for Cu2+ removal.

  • loading
  • [1]
    H. Maleki, Recent advances in aerogels for environmental remediation applications: A review, Chem. Eng. J., 300(2016), p. 98. doi: 10.1016/j.cej.2016.04.098
    [2]
    C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, and A. Bhatnagar, Role of nanomaterials in water treatment applications: A review, Chem. Eng. J., 306(2016), p. 1116. doi: 10.1016/j.cej.2016.08.053
    [3]
    M. Narayani and K.V. Shetty, Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review, Crit. Rev. Environ. Sci. Technol., 43(2013), No. 9, p. 955. doi: 10.1080/10643389.2011.627022
    [4]
    F. Gode and E. Pehlivan, Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature, J. Hazard. Mater., 136(2006), No. 2, p. 330. doi: 10.1016/j.jhazmat.2005.12.021
    [5]
    F.L. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92(2011), No. 3, p. 407. doi: 10.1016/j.jenvman.2010.11.011
    [6]
    L.B. Hoch, E.J. Mack, B.W. Hydutsky, J.M. Hershman, J.M. Skluzace, and T.E. Mallouk, Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium, Environ. Sci. Technol., 42(2008), No. 7, p. 2600. doi: 10.1021/es702589u
    [7]
    D. Yang, X.Y. Zhao, X.Y. Zou, Z.Y. Zhou, and Z.Y. Jiang, Removing Cr(VI) in water via visible-light photocatalytic reduction over Cr-doped SrTiO3 nanoplates, Chemosphere, 215(2019), p. 586. doi: 10.1016/j.chemosphere.2018.10.068
    [8]
    J. Li, X.X. Wang, G.X. Zhao, C.L. Chen, Z.F. Chai, A. Alsaedi, T. Hayat, and X.K. Wang, Metal-organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev., 47(2018), No. 7, p. 2322. doi: 10.1039/C7CS00543A
    [9]
    A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwall, A.G. Tkachev, and V.K. Gupta, Adsorption of heavy metals on conventional nanostructured materials for waste water treatment purposes: A review, Ecotoxicol. Environ. Saf., 148(2018), p. 702. doi: 10.1016/j.ecoenv.2017.11.034
    [10]
    Q.X. Zheng, Li Z.L., X.X. Miao, Li J.H., Y.F. Huang, H.N. Xia, and C.H. Xiong, Preparation and characterization of novel organic chelating resin and its application in recovery of Zn(II) from aqueous solutions, Appl. Organomet. Chem., 31(2017), art. No. e3546. doi: 10.1002/aoc.3546
    [11]
    X. Mi, G.B. Huang, W.S. Xie, W. Wang, Y. Liu, and J.P. Gao, Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions, Carbon, 50(2012), No. 13, p. 4856. doi: 10.1016/j.carbon.2012.06.013
    [12]
    K. Vikrant and K.H. Kim, Nano-materials for the adsorptive treatment of Hg(II) ions from water, Chem. Eng. J., 358(2019), p. 264. doi: 10.1016/j.cej.2018.10.022
    [13]
    Y.B. Sun, S.B. Yang, Y. Chen, C.C. Ding, W.C. Cheng, and X.K. Wang, Adsorption and desorption of U(VI) on functionalized graphene gxides: A combined experimental and theoretical study, Environ. Sci. Technol., 49(2015), No. 7, p. 4255. doi: 10.1021/es505590j
    [14]
    B. Cai, V. Sayevich, N. Gaponik, and A. Eychmuller, Emerging hierarchical aerogels: Self-assembly of metal and semiconductor nanocrystals, Adv. Mater., 30(2018), No. 33, art. No. 1707518. doi: 10.1002/adma.201707518
    [15]
    M. Moner-Girona, A. Roig, E. Molins, and J. Llibre, Sol–gel route to direct formation of silica aerogel microparticles using supercritical solvents, J. Sol Gel Sci. Technol., 26(2003), No. 1, p. 645.
    [16]
    T.F. Baumann, A.E. Gash, S.C. Chinn, A.M. Sawvel, R.S. Maxwell, and. J.H. Satcher, Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors, Chem. Mater., 17(2005), No. 2, p. 395. doi: 10.1021/cm048800m
    [17]
    L.B. Hammouda, I. Mejri, M.K. Younes, and A. Ghorbel, ZrO2 aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 127.
    [18]
    H. Hirashima, Preparation of TiO2 aerogels-like materials under ambient pressure, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 145.
    [19]
    A.C. Pierre and A. Rigacci, SiO2 aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 21.
    [20]
    A.M. Anderson and M.K. Carroll, Hydrophobic silica aerogels: Review of synthesis, properties and applications, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 47.
    [21]
    S. Mulik and C. Sotiriou-Leventis, Resorcinol-formaldehyde aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 215.
    [22]
    A. Rigacci and P. Achard, Cellulosic and polyurethane aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogel Handbook, Springer, New York, 2011, p. 191.
    [23]
    T. Horikawa, J. Hayashi, and K. Muroyama, Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin, Carbon, 42(2004), No. 1, p. 169. doi: 10.1016/j.carbon.2003.10.007
    [24]
    M.A. Worsley, J.H. Satcher Jr., and T.F. Baumann, Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes, Langmuir, 24(2008), No. 17, p. 9763. doi: 10.1021/la8011684
    [25]
    M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher Jr., and T.F. Baumann, Synthesis of graphene aerogel with high electrical conductivity, J. Am. Chem. Soc., 132(2010), No. 40, p. 14067. doi: 10.1021/ja1072299
    [26]
    D.C. Wu, F. Xu, B. Sun, R.W. Fu, H.K. He, and K. Matyjaszewski, Design and preparation of porous polymers, Chem. Rev., 112(2012), No. 7, p. 3959. doi: 10.1021/cr200440z
    [27]
    S.L. Brock and H.T. Yu, Chalcogenide aerogels, [in] M.A. Aegerter, N. Leventis, and M.M. Koebel, eds., Aerogels Handbook, Springer, New York, 2011, p. 367.
    [28]
    J.L. Mohanan, I.U. Arachchige, and S.L. Brock, Porous semiconductor chalcogenide aerogels, Science, 307(2005), No. 5708, p. 397.
    [29]
    G.Q. Zu, J. Shen, W.Q. Wang, L.P. Zou, Y. Lian, Z.H. Zhang, B. Liu, and F. Zhang, Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts, Chem. Mater., 26(2014), No. 19, p. 5761. doi: 10.1021/cm502886t
    [30]
    T.W. Wang, H. Sun, J.W. Long, Y.Z. Wang, and D. Schiraldi, Biobased poly(furfuryl alcohol)/clay aerogel composite prepared by a freeze-drying process, ACS Sustainable Chem. Eng., 4(2016), No. 5, p. 2601. doi: 10.1021/acssuschemeng.6b00089
    [31]
    Y.L. Pan, X.D. Cheng, T. Zhou, L.L. Gong, and H.P. Zhang, Spray freeze-dried monolithic silica aerogel based on water-glass with thermal super-insulating properties, Mater. Lett., 229(2018), p. 265. doi: 10.1016/j.matlet.2018.07.035
    [32]
    L.L. Ren, S.M. Cui, F.C. Cao, and Q.H. Guo, An easy way to prepare monolithic inorganic oxide aerogels, Angew. Chem. Int. Ed., 53(2014), No. 38, p. 10147. doi: 10.1002/anie.201406387
    [33]
    J.J. Liao, P.Z. Gao, L. Xu, and J. Feng, A study of morphological properties of SiO2 aerogels obtained at different temperatures, J. Adv. Ceram., 7(2018), No. 4, p. 307. doi: 10.1007/s40145-018-0280-6
    [34]
    L.Y. Yu, Z.L. Xu, H.M. Shen, and H. Yang, Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol–gel method, J. Membr. Sci., 337(2009), No. 1-2, p. 257. doi: 10.1016/j.memsci.2009.03.054
    [35]
    A.S.M. Chong and X.S. Zhao, Functionalization of SBA-15 with APTES and characterization of functionalized materials, J. Phys. Chem. B, 107(2003), No. 46, p. 12650. doi: 10.1021/jp035877+
    [36]
    D. Janackovic, V. Jakanovic, L. Kostic-Gvozdenovic, and D. Uskokovic, Synthesis of mullite nanostructured spherical powder by ultrasonic spray pyrolysis, Nanostruct. Mater., 10(1998), No. 3, p. 341. doi: 10.1016/S0965-9773(98)00074-9
    [37]
    M. Medina, J. Tapia, S. Pacheco, M. Espinosa, and R. Rodriguez, Adsorption of lead ions in aqueous solution using silica-alumina nanoparticles, J. Non-Cryst. Solids, 356(2010), No. 6-8, p. 383. doi: 10.1016/j.jnoncrysol.2009.11.032
    [38]
    X.F. Ji, Q. Zhou, G.B. Qiu, B. Peng, M. Guo, and M. Zhang, Synthesis of an alumina enriched Al2O3–SiO2 aerogel: Reinforcement and ambient pressure drying, J. Non-Cryst. Solids, 471(2017), p. 160. doi: 10.1016/j.jnoncrysol.2017.05.038
    [39]
    S.J. Juhl, N.J.H. Dunn, M.K. Carroll, A.M. Anderson, B.A. Bruno, J.E. Madero, and M.S. Bono Jr., Epoxide-assisted alumina aerogels by rapid supercritical extraction, J. Non-Cryst. Solids, 426(2015), p. 141. doi: 10.1016/j.jnoncrysol.2015.06.030
    [40]
    A.S. Shaygin, I.V. Kozhevnikov, E.Y. Gerasimov, A.S. Andreev, O.B. Lapina, and O.N. Martyanov, The impact of Si/Al ratio on properties of aluminosilicate aerogels, Microporous Mesoporous Mater., 251(2017), p. 105. doi: 10.1016/j.micromeso.2017.05.053
    [41]
    X.D. Wu, G.F. Shao, S. Cui, L. Wang, and X.D. Shen, Synthesis of a novel Al2O3–SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum, Ceram. Int., 42(2016), No. 1, p. 874. doi: 10.1016/j.ceramint.2015.09.012
    [42]
    L. Wang, J. Zhang, R. Zhao, Y. Li, C. Li, and C.L. Zhang, Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies, Bioresource Technol., 101(2010), No. 15, p. 5808. doi: 10.1016/j.biortech.2010.02.099
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Share Article

    Article Metrics

    Article Views(2495) PDF Downloads(33) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return