Ping-ping Wang, Guo-qin Chen, Wen-jun Li, Hui Li, Bo-yu Ju, Murid Hussain, Wen-shu Yang, and Gao-hui Wu, Microstructure evolution and thermal conductivity of the diamond/Al composite during thermal cycling, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2114-0
Cite this article as:
Ping-ping Wang, Guo-qin Chen, Wen-jun Li, Hui Li, Bo-yu Ju, Murid Hussain, Wen-shu Yang, and Gao-hui Wu, Microstructure evolution and thermal conductivity of the diamond/Al composite during thermal cycling, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2114-0
Research Article

Microstructure evolution and thermal conductivity of the diamond/Al composite during thermal cycling

+ Author Affiliations
  • Received: 19 April 2020Revised: 3 June 2020Accepted: 3 June 2020Available online: 10 June 2020
  • The microstructure evolution and performance of Diamond/Al composites during thermal cycling, which is important for their wide application, has been rarely investigated. In the present work, the thermal stability of Diamond/Al composite during thermal cycling up to 200 cycles has been explored: thermal conductivity of the composites was measured, and SEM observation of the marked-out area of the same sample was carried out to achieve quasi-in-situ observation. The interface between (100) plane of diamond and Al matrix was well bonded with zigzag morphology and extensive needle-like Al4C3 phases. However, the interfacial bonding between (111) plane of diamond and Al matrix was rather weak, which was debonded during thermal cycling. The debonding length was initially increased rapidly within the initial 100 cycles, which was then increased slowly in the following 100 cycles. The thermal conductivity of the Diamond/Al composite was primarily decreased very abruptly within initial 20 cycles, increased afterward, and then further decreased monotonously with the increase of thermal cycles. The decreased thermal conductivity of the Al matrix and corresponding thermal stress concentration at the interface caused by the thermal mismatch stress is suggested as the main factor especially in the initial period rather than the interfacial debonding.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (1776) PDF downloads(25) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return