Cite this article as:

Research Article

Rapid Removal of the Copper Impurity from Bismuth-Copper Alloy Melts via Super-Gravity Separation

+ Author Affiliations
  • Received: 26 April 2020Revised: 29 May 2020Accepted: 15 June 2020Available online: 17 June 2020
  • To rapidly remove the copper impurity from bismuth-copper alloy melts, a green method of super-gravity separation was investigated, which has the characteristics of enhancing the filtration process of bismuth and copper phases. In this study, the influence of super-gravity on the removal of copper impurity from bismuth-copper alloy melts was discussed. After super-gravity separation, the liquid bismuth-rich phases were mainly filtered into the lower crucible, while most of the fine copper phases were remained in the opposite direction. With optimized conditions of T = 280℃, G = 450, and t = 200 s, the purity of the filtered bismuth phase exceeded 99.7wt%, and the mass proportion of the separated bismuth of Bi-2wt%Cu and Bi-10wt%Cu alloys reached 96.27wt% and 85.71wt% respectively, which indicated the little loss of bismuth in the residual. Simultaneously, the removal rate of copper impurity went to 88.0% and 97.8%, respectively. Furthermore, the separation process could be completed rapidly, environmentally friendly and efficiently.
  • 加载中
  •  

  • [1] Yi Jing, Hong-mei Zhang, Hao Wu, Lian-jie Li, Hong-bin Jia, and  Zheng-yi Jiang, Effects of microrolling parameters on the microstructure and deformation behavior of pure copper, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1545-3
    [2] Xing Chen, Kai Huang, and  Cheng-yan Wang, Facile synthesis of monodispersed copper oxalate flaky particles in the presence of EDTA, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1624-5
    [3] Xiao-ping Ren and  Zhan-qiang Liu, Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1643-2
    [4] Hamed Jamshidi Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1682-8
    [5] Lun-wei Wang, Xue-ming Lü, Mei Liu, Zhi-xiong You, Xue-wei Lü, and  Chen-guang Bai, Preparation of ferronickel from nickel laterite via coal-based reduction followed by magnetic separation, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1622-7
    [6] Rowaid Al-khazraji, Ya-qiong Li, and  Li-feng Zhang, Boron separation from Si-Sn alloy by slag treatment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1698-0
    [7] Xiao-fang Shi, Li-zhong Chang, and  Jian-jun Wang, Effect of ultrasonic power introduced by a mold copper plate on the solidification process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1388-3
    [8] Ying-bo Dong, Hao Li, Hai Lin, and  Yuan Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1416-3
    [9] Ri-jin Cheng, Hong-wei Ni, Hua Zhang, Xiao-kun Zhang, and  Si-cheng Bai, Mechanism research on arsenic removal from arsenopyrite ore during a sintering process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1414-5
    [10] Saeed Nobakht and  Mohsen Kazeminezhad, Electrical annealing of severely deformed copper:microstructure and hardness, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1506-2
    [11] Wei-ping Liu and  Xia-fei Yin, Recovery of copper from copper slag using a microbial fuel cell and characterization of its electrogenesis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1444-z
    [12] Saman Beikzadeh Noei, Saeed Sheibani, Fereshteh Rashchi, and  Seyed Mohammad Javad Mirazimi, Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1443-0
    [13] Rui-min Jiao, Peng Xing, Cheng-yan Wang, Bao-zhong Ma, and  Yong-Qiang Chen, Recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation:process optimization and mineralogical study, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1485-3
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1153) PDF downloads(19) Cited by()

Proportional views

Rapid Removal of the Copper Impurity from Bismuth-Copper Alloy Melts via Super-Gravity Separation

  • Corresponding author:

    Zhan-cheng Guo    E-mail: zcguo@ustb.edu.cn

  • State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

Abstract: To rapidly remove the copper impurity from bismuth-copper alloy melts, a green method of super-gravity separation was investigated, which has the characteristics of enhancing the filtration process of bismuth and copper phases. In this study, the influence of super-gravity on the removal of copper impurity from bismuth-copper alloy melts was discussed. After super-gravity separation, the liquid bismuth-rich phases were mainly filtered into the lower crucible, while most of the fine copper phases were remained in the opposite direction. With optimized conditions of T = 280℃, G = 450, and t = 200 s, the purity of the filtered bismuth phase exceeded 99.7wt%, and the mass proportion of the separated bismuth of Bi-2wt%Cu and Bi-10wt%Cu alloys reached 96.27wt% and 85.71wt% respectively, which indicated the little loss of bismuth in the residual. Simultaneously, the removal rate of copper impurity went to 88.0% and 97.8%, respectively. Furthermore, the separation process could be completed rapidly, environmentally friendly and efficiently.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return