Cite this article as:

Research Article

Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching

+ Author Affiliations
  • Received: 8 April 2020Revised: 19 June 2020Accepted: 22 June 2020Available online: 24 June 2020
  • In order to obtain better bioleaching efficiency, bacterial community dynamics and copper leaching with applying forced aeration were investigated during low-grade copper sulphide bioleaching. Results illustrated appropriate aeration yielded improved bacteria concentrations and enhanced leaching efficiencies. The highest bacteria concentration and Cu2+ concentration after 14-day leaching were 7.61×107 cells•mL-1 and 704.9 mg•L-1, respectively, when aeration duration was 4 h•d-1. The attached bacteria played a significant role during bioleaching from day 1 to day 7. However, free bacteria dominated the bioleaching processes from day 8 to day 14. This is mainly caused by the formation of passivation layer through Fe3+ hydrolysis along with bioleaching, which inhibited the contact between attached bacteria and ore. Meanwhile, 16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidanson on bioleaching process. The results demonstrate the importance of free and attached bacteria in bioleaching.
  • 加载中
  •  

  • [1] Le-ping Wang, Gang Chen, Qi-xin Shen, Guo-min Li, Shi-you Guan, and  Bing Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1653-0
    [2] Chen-yang Qiu, Lang Li, Lei-lei Hao, Jian-gong Wang, Xun Zhou, and  Yong-lin Kang, Effect of continuous annealing temperature on microstructure and properties of ferritic rolled interstitial-free steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1600-0
    [3] Xiao-ping Wang, Ti-chang Sun, Chao Chen, and  Jue Kou, Effects of Na2SO4 on iron and nickel reduction in a high-iron and low-nickel laterite ore, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1582-y
    [4] Yi Jing, Hong-mei Zhang, Hao Wu, Lian-jie Li, Hong-bin Jia, and  Zheng-yi Jiang, Effects of microrolling parameters on the microstructure and deformation behavior of pure copper, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1545-3
    [5] Nag-Choul Choi, Kang Hee Cho, Bong Ju Kim, Soonjae Lee, and  Cheon Young Park, Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1569-8
    [6] Yan Jia, He-yun Sun, Qiao-yi Tan, Hong-shan Gao, Xing-liang Feng, and  Ren-man Ruan, Linking leach chemistry and microbiology of low-grade copper ore bioleaching at different temperatures, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1570-2
    [7] Bao-hua Yang, Ai-xiang Wu, Guillermo A. Narsilio, Xiu-xiu Miao, and  Shu-yue Wu, Use of high-resolution X-ray computed tomography and 3D image analysis to quantify mineral dissemination and pore space in oxide copper ore particles, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1484-4
    [8] Dong-hui Liu, Hao Liu, Jian-liang Zhang, Zheng-jian Liu, Xun Xue, Guang-wei Wang, and  Qing-feng Kang, Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1487-1
    [9] Ying-bo Dong, Hao Li, Hai Lin, and  Yuan Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1416-3
    [10] Saman Beikzadeh Noei, Saeed Sheibani, Fereshteh Rashchi, and  Seyed Mohammad Javad Mirazimi, Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1443-0
    [11] Xiao-dong Hao, Yi-li Liang, Hua-qun Yin, Hong-wei Liu, Wei-min Zeng, and  Xue-duan Liu, Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1415-4
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1084) PDF downloads(17) Cited by()

Proportional views

Effects of forced aeration on community dynamics of free and attached bacteria in copper sulphide ore bioleaching

  • Corresponding author:

    Wei Chen    E-mail: ustbchenwei@126.com

  • 1. Key Laboratory of Ministry of Education for High-Efficient Mining and Safety of Metal, University of Science and Technology Beijing, Beijing 100083, China
  • 2. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 3. Discipline of Chemical Engineering, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia

Abstract: In order to obtain better bioleaching efficiency, bacterial community dynamics and copper leaching with applying forced aeration were investigated during low-grade copper sulphide bioleaching. Results illustrated appropriate aeration yielded improved bacteria concentrations and enhanced leaching efficiencies. The highest bacteria concentration and Cu2+ concentration after 14-day leaching were 7.61×107 cells•mL-1 and 704.9 mg•L-1, respectively, when aeration duration was 4 h•d-1. The attached bacteria played a significant role during bioleaching from day 1 to day 7. However, free bacteria dominated the bioleaching processes from day 8 to day 14. This is mainly caused by the formation of passivation layer through Fe3+ hydrolysis along with bioleaching, which inhibited the contact between attached bacteria and ore. Meanwhile, 16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidanson on bioleaching process. The results demonstrate the importance of free and attached bacteria in bioleaching.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return