Jia Xiao, Ming Li, Jian-ping Liang, Li Jiang, De-jun Wang, Xiang-xi Ye, Ze-zhong Chen, Na-xiu Wang, and Zhi-jun Li, Fine structure characterization of an explosively-welded GH3535/316H bimetallic plate interface, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1811-1820. https://doi.org/10.1007/s12613-020-2128-7
Cite this article as:
Jia Xiao, Ming Li, Jian-ping Liang, Li Jiang, De-jun Wang, Xiang-xi Ye, Ze-zhong Chen, Na-xiu Wang, and Zhi-jun Li, Fine structure characterization of an explosively-welded GH3535/316H bimetallic plate interface, Int. J. Miner. Metall. Mater., 28(2021), No. 11, pp. 1811-1820. https://doi.org/10.1007/s12613-020-2128-7
Research Article

Fine structure characterization of an explosively-welded GH3535/316H bimetallic plate interface

+ Author Affiliations
  • Corresponding authors:

    Ze-zhong Chen    E-mail: zzhchen@usst.edu.cn

    Zhi-jun Li    E-mail: lizhijun@sinap.ac.cn

  • Received: 9 March 2020Revised: 19 June 2020Accepted: 24 June 2020Available online: 26 June 2020
  • An explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates to provide a more cost-effective structural material for ultrahigh temperature, molten salt thermal storage systems. The microstructure of the bonding interfaces were extensively investigated by scanning electron microscopy, energy dispersive spectrometry, and an electron probe microanalyzer. The bonding interface possessed a periodic, wavy morphology and was adorned by peninsula- or island-like transition zones. At higher magnification, a matrix recrystallization region, fine grain region, columnar grain region, equiaxed grain region, and shrinkage porosity were observed in the transition zones and surrounding area. Electron backscattered diffraction demonstrated that the strain in the recrystallization region of the GH3535 matrix and transition zone was less than the substrate. Strain concentration occurred at the interface and the solidification defects in the transition zone. The dislocation substructure in 316H near the interface was characterized by electron channeling contrast imaging. A dislocation network was formed in the grains of 316H. The microhardness decreased as the distance from the welding interface increased and the lowest hardness was inside the transition zone.

  • loading
  • [1]
    H.X. Xu, J. Lin, Y.J. Zhong, Z.Y. Zhu, Y. Chen, J.D. Liu, and B.J. Ye, Characterization of molten 2LiF–BeF2 salt impregnated into graphite matrix of fuel elements for thorium molten salt reactor, Nucl. Sci. Tech., 30(2019), No. 5, art. No. 74. doi: 10.1007/s41365-019-0600-8
    [2]
    F.F. Han, B.M. Zhou, H.F. Huang, B. Leng, Y.L. Lu, Z.J. Li, and X.T. Zhou, Effect of long-term thermal exposure on the hot ductility behavior of GH3535 alloy, Mater. Sci. Eng. A, 673(2016), p. 299. doi: 10.1016/j.msea.2016.07.034
    [3]
    L. Jiang, X.X. Ye, D.J. Wang, and Z.J. Li, Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys, Nucl. Sci. Tech., 31(2020), No. 1, art. No. 6. doi: 10.1007/s41365-019-0719-7
    [4]
    F.F Han, B.M. Zhou, H.F. Huang, B.Leng, Y.L. Lu, J.S. Dong, Z.J. Li and X.T. Zhou, The tensile behavior of GH3535 superalloy at elevated temperature, Mater. Chem. Phys., 182(2016), p. 22. doi: 10.1016/j.matchemphys.2016.07.001
    [5]
    T. Liu, J.S. Dong, L. Wang, Z.J. Li, X.T. Zhou, L.H. Lou, and J. Zhang, Effect of long-term thermal exposure on microstructure and stress rupture properties of GH3535 superalloy, J. Mater. Sci. Technol., 31(2015), No. 3, p. 269. doi: 10.1016/j.jmst.2014.07.021
    [6]
    B.X. Liu, S. Wang, W. Fang, F.X. Yin, and C.X. Chen, Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate, Mater. Charact., 148(2019), p. 17. doi: 10.1016/j.matchar.2018.12.008
    [7]
    J. Groschopp, V. Heyne, and B. Hofmann, Explosively clad titanium steel composite, Weld. Int., 1(1987), No. 9, p. 879. doi: 10.1080/09507118709451115
    [8]
    Y.N. Malyutina, K.A. Skorohod, K.E. Shevtsova, and A.V. Chesnokova, Multilayered titanium-steel composite produced by explosive welding, AIP Conf. Proc., 1683(2015), No. 1, art. No. 020142. doi: 10.1063/1.4932832
    [9]
    M.X. Xie, X.T. Shang, L.J. Zhang, Q.L. Bai, and T.T. Xu, Interface characteristic of explosive-welded and hot-rolled TA1/X65 bimetallic plate, Metals, 8(2018), No. 3, art. No. 159. doi: 10.3390/met8030159
    [10]
    B. Gulenc, Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method, Mater. Des., 29(2008), No. 1, p. 275. doi: 10.1016/j.matdes.2006.11.001
    [11]
    A. Loureiro, R. Mendes, J.B. Ribeiro, and R.M. Leal, Effect of explosive ratio on explosive welding quality of copper to aluminium, Cienc. Tecnol. Mater., 29(2017), No. 1, p. e46. doi: 10.1016/j.ctmat.2016.06.012
    [12]
    R. Kacar and M. Acarer, An investigation on the explosive cladding of 316L stainless steel-din-P355GH steel, J. Mater. Process. Technol., 152(2004), No. 1, p. 91. doi: 10.1016/j.jmatprotec.2004.03.012
    [13]
    S.V. Gladkovsky, S.V. Kuteneva, and S.N. Sergeev, Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding, Mater. Charact., 154(2019), p. 294. doi: 10.1016/j.matchar.2019.06.008
    [14]
    T.N. Prasanthi, R.C. Sudha, and S. Saroja, Explosive cladding and post-weld heat treatment of mild steel and titanium, Mater. Des., 93(2016), p. 180. doi: 10.1016/j.matdes.2015.12.120
    [15]
    G.H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal, and A. Loureiro, Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds, Mater. Charact., 142(2018), p. 432. doi: 10.1016/j.matchar.2018.06.005
    [16]
    I. Szachogluchowicz, L. Sniezek, and V. Hutsaylyuk, Low cycle fatigue properties of AA2519–Ti6Al4V laminate bonded by explosion welding, Eng. Fail. Anal., 69(2016), p. 77. doi: 10.1016/j.engfailanal.2016.01.001
    [17]
    J.Z. Ashani and S.M. Bagheri, Explosive scarf welding of aluminum to copper plates and their interface properties, Materialwiss. Werkstofftech., 40(2009), No. 9, p. 690. doi: 10.1002/mawe.200900415
    [18]
    I.A. Bataev, T.S. Ogneva, A.A. Bataev, V.I. Mali, M.A. Esikov, D.V. Lazurenko, Y. Guo, and A.M. Jorge Junior, Explosively welded multilayer Ni–Al composites, Mater. Des., 88(2015), p. 1082. doi: 10.1016/j.matdes.2015.09.103
    [19]
    L.J. Zhang, Q. Pei, J.X. Zhang, Z.Y. Bi, and P.C. Li, Study on the microstructure and mechanical properties of explosive welded 2205/X65 bimetallic sheet, Mater. Des., 64(2014), p. 462. doi: 10.1016/j.matdes.2014.08.013
    [20]
    Y. Kaya, N. Kahraman, A. Durgutlu, and B. Gülenç, Investigation of the microstructural, mechanical and corrosion properties of grade A ship steel-duplex stainless steel composites produced via explosive welding, Metall. Mater. Trans. A, 48(2017), No. 8, p. 3721. doi: 10.1007/s11661-017-4161-3
    [21]
    S.A.A. Akbari Mousavi and P. Farhadi Sartangi, Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel, Mater. Des., 30(2009), No. 3, p. 459. doi: 10.1016/j.matdes.2008.06.016
    [22]
    M. Acarer, B. Gülenç, and F. Findik, Investigation of explosive welding parameters and their effects on microhardness and shear strength, Mater. Des., 24(2003), No. 8, p. 659. doi: 10.1016/S0261-3069(03)00066-9
    [23]
    M. Prażmowski, D. Rozumek, and H. Paul, Static and fatigue tests of bimetal Zr-steel made by explosive welding, Eng. Fail. Anal., 75(2017), p. 71. doi: 10.1016/j.engfailanal.2016.12.022
    [24]
    D. Rozumek and Z. Marciniak, Fatigue tests of bimetal zirconium-steel made by explosive welding, Procedia Eng., 160(2016), p. 137. doi: 10.1016/j.proeng.2016.08.873
    [25]
    D. Rozumek and G. Kwiatkowski, The influence of heat treatment parameters on the cracks growth under cyclic bending in st-Ti clad obtained by explosive welding, Metals, 9(2019), No. 3, art. No. 338. doi: 10.3390/met9030338
    [26]
    T.J. Ruggles, D.T. Fullwood, and J.W. Kysar, Resolving geometrically necessary dislocation density onto individual dislocation types using EBSD-based continuum dislocation microscopy, Int. J. Plast., 76(2016), p. 231. doi: 10.1016/j.ijplas.2015.08.005
    [27]
    A. Pandey, F. Kabirian, J.H. Hwang, S.H. Choi, and A.S. Khan, Mechanical responses and deformation mechanisms of an AZ31 Mg alloy sheet under dynamic and simple shear deformations, Int. J. Plast., 68(2015), p. 111. doi: 10.1016/j.ijplas.2014.12.001
    [28]
    M.U. Farooq, U. Klement, and G. Nolze, The role of α- to ɛ-Co phase transformation on strain hardening of a Co–Cr–Mo laser clad, Mater. Sci. Eng. A, 445-446(2007), p. 40.
    [29]
    I. Gutierrez-Urrutia and D. Raabe, Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt.% Mn–0.6 wt.% C TWIP steel observed by electron channeling contrast imaging, Acta Mater., 59(2011), No. 16, p. 6449. doi: 10.1016/j.actamat.2011.07.009
    [30]
    F. Findik, Recent developments in explosive welding, Mater. Des., 32(2011), No. 3, p. 1081. doi: 10.1016/j.matdes.2010.10.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(1874) PDF Downloads(66) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return