Fine Structure Characterization of Explosively Welded GH3535/316H Bimetallic Plate Interface
-
Jia Xiao1,2),
-
Ming Li2),
-
Li Jiang2),
-
De-jun Wang4),
-
Xiang-Xi Ye2),
-
Jian-ping Liang2,3),
-
Ze-zhong Chen1), ,
-
Na-xiu Wang2), and
-
Zhi-jun Li2,3),
+ Author Affiliations
-
1.
School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
-
2.
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
-
3.
Dalian National Laboratory for Clean Energy, Dalian 116023, China
-
4.
Ministry of Ecology and Environment, Beijing 100135, China
-
Received: 9 March 2020; Revised:
19 June 2020; Accepted:
24 June 2020; Available online:
26 June 2020
-
Abstract
To provide one more cost-effective structural materials for the ultra-high temperature molten salt thermal storage systems, the explosion-welded technology was induced to manufacture the GH3535/316H bimetallic plates in the present work. The microstructures of the bonding interfaces have been extensively investigated by scanning electron microscope, energy dispersive spectrometer, and electron probe micro-analyzer. It was discovered that the bonding interfaces possess the periodic wavy morphology and are adorned by peninsula- or island-like transition zones. At higher magnification, matrix recrystallization region, fine grain region, columnar grain region, equiaxed grain region, and shrinkage porosity can be observed in the transition zones and the surrounding area. The analysis of electron backscattered diffraction demonstrated that the strain in the recrystallization region of the GH3535 matrix and transition zone is lower than the substrate. Strain concentration occurred at the interface and the solidification defects in the transition zone. The dislocation substructure in 316H near the interface was characterized by the electron channeling contrast imaging. The results showed that a lot of dislocations network was formed in the grains of 316H. Microhardness tests showed that the micro-hardness decreased as the distance from the welding interface increased, and the lowest hardness value was inside the transition zone.
-
-
References
-
[1] |
Ali Shamsipur, Amir Anvari, and Ahmad Keyvani, Improvement of microstructure and corrosion properties of friction stir welded AA5754 by adding Zn interlayer, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-018-1646-z
|
[2] |
S. Tanhaei, Kh. Gheisari, and S. R. Alavi Zaree, Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-018-1610-y
|
[3] |
Ji-hong Dong, Chong Gao, Yao Lu, Jian Han, Xiang-dong Jiao, and Zhi-xiong Zhu, Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024-T3 aluminum alloy, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1392-7
|
[4] |
Xiao-dong Hao, Yi-li Liang, Hua-qun Yin, Hong-wei Liu, Wei-min Zeng, and Xue-duan Liu, Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1415-4
|
[5] |
Adam Khan Mahaboob Basha, Sundarrajan Srinivasan, and Natarajan Srinivasan, Studies on thermally grown oxide as an interface between plasma-sprayed coatings and a nickel-based superalloy substrate, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1451-0
|
[6] |
Ye-lian Zhou, Zhi-yin Deng, and Miao-yong Zhu, Study on the separation process of non-metallic inclusions at the steel-slag interface using water modeling, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1445-y
|
[7] |
Erdem Karakulak, Characterization of Cu-Ti powder metallurgical materials, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1381-x
|
[8] |
A. R. Sufizadeh and S. A. A. Akbari Mousavi, Microstructures and mechanical properties of dissimilar Nd:YAG laser weldments of AISI4340 and AISI316L steels, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1435-0
|
[9] |
Zhi-hao Yao, Shao-cong Wu, Jian-xin Dong, Qiu-ying Yu, Mai-cang Zhang, and Guang-wei Han, Constitutive behavior and processing maps of low-expansion GH909 superalloy, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1424-3
|
[10] |
Xiao-fang Shi, Li-zhong Chang, and Jian-jun Wang, Effect of ultrasonic power introduced by a mold copper plate on the solidification process, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1388-3
|
[11] |
Anna Zykova, Natalya Popova, Mark Kalashnikov, and Irina Kurzina, Fine structure and phase composition of Fe-14Mn-1.2C steel:influence of a modified mixture based on refractory metals, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1433-2
|
-
-
Proportional views
-