Cite this article as:

Research Article

Electrochemical deposition of Nd and Nd–Fe alloy from Cu6Nd alloy in NaCl–KCl–NdCl3 melt

+ Author Affiliations
  • Received: 25 April 2020Revised: 26 June 2020Accepted: 28 June 2020Available online: 30 June 2020
  • Electrorefining is an effective way to separate metals from corresponding alloys. To obtain Nd from Cu6Nd alloy, cyclic voltammetry and square wave voltammetry were conducted to investigate the reduction behaviour of Nd3+ and the anode dissolution behaviour of Cu6Nd in NaCl-KCl-0.5mol% NdCl3 melt at 1023 K. According to the analysis of the electrochemical behaviour, the cell voltage was determined to be between 0.3 V and 1.2 V for separating Nd from Cu6Nd. After electrolysis at 0.6 V for 4 h, the Nd was found at the surface of the Mo cathode without any Cu. For Fe cathode, the deposition with atom ratio Nd:Fe=1:1 was formed on the surface of the Fe electrode. However, in the experiment terms, the low current density of separation is still a great challenge and needs to be solved.
  • 加载中
  •  

  • [1] N. Malatji,A.P.I. Popoola,T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2178-x
    [2] Chun-duo Dai,Yu Fu,Jia-xiang Guo, and Cui-wei Du, Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2149-2
    [3] Zheng-hua Deng,Hai-qing Yin,Xue Jiang,Cong Zhang,Guo-fei Zhang,Bin Xu,Guo-qiang Yang,Tong Zhang,Mao Wu, and Xuan-hui Qu, Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1894-6
    [4] Jing-long Liang,Dong-bin Wang,Le Wang,Hui Li,Wei-gang Cao, and Hong-yan Yan, A new electrochemical process on the recovery metallic Mn from waste LiMn2O4 based Li-ion batteries in NaCl-CaCl2 melts, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2144-7
    [5] Shu-mei Chen,Chun-fa Liao,Jue-yuan Lin,Bo-qing Cai,Xu Wang, and Yun-fen Jiao, Erratum to: Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1938-y
    [6] Chen-ming Fan,Shi-zhe Liu,Jing-jiu Gu,Shi-you Guan,Jin-hua Zhao, and Bing Li, Electrochemical investigation of the anode processes in LiF–NdF3 melt with low oxygen content, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2010-7
    [7] Yan-ke Wu,Song Chen, and Li-jun Wang, Electrochemistry of Hf (IV) in NaCl-KCl-NaF-K2HfF6 molten salts, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2083-3
    [8] Yan-peng Dou,Di-yong Tang,Hua-yi Yin, and Di-hua Wang, Electrochemical preparation of Invar Fe-Ni36 alloy from mixed oxides precursor in molten carbonates, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2169-y
    [9] Hossain Ebrahimzadeh,Hassan Farhangi,Seyed Ali Asghar Akbari Mousavi, and Arman Ghahramani, Microstructural analyses of aluminum–magnesium–silicon alloys welded by pulsed Nd: YAG laser welding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2027-y
    [10] Slađana Laketić,Marko Rakin,Miloš Momčilović,Jovan Ciganović,Đorđe Veljović, and Ivana Cvijović-Alagić, Surface modifications of biometallic CP-Ti and Ti-13Nb-13Zr alloy by picosecond Nd:YAG laser, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2061-9
    [11] Tai-qi Yin,Lang Chen,Yun Xue,Yang-hai Zheng,Xue-peng Wang,Yong-de Yan,Mi-lin Zhang,Guiling Wang,Fan Gao, and Min Qiu, Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu, and Zn) in a LiCl–KCl melt, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2112-2
    [12] Yuan Li,Li-na Cheng,Wen-kang Miao,Chun-xiao Wang,De-zhi Kuang, and Shu-min Han, Nd–Mg–Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1880-z
    [13] Shu-mei Chen, Chun-fa Liao, Jue-yuan Lin, Bo-qing Cai, Xu Wang, and  Yun-fen Jiao, Electrical conductivity of molten LiF-DyF3-Dy2O3-Cu2O system for Dy-Cu intermediate alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1775-z
    [14] Bo Zhang, Wen Li, Hong Li, and  Hai-feng Zhang, Spontaneous infiltration and wetting behaviors of a Zr-based alloy melt on a porous SiC substrate, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1630-7
    [15] M. H. Farshidi, M. Rifai, and  H. Miyamoto, Microstructure evolution of a recycled Al-Fe-Si-Cu alloy processed by tube channel pressing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1668-6
    [16] Kai-rui Zhu, Wei Jiang, Ji-li Wu, and  Bo Zhang, Effect of Mo on properties of the industrial Fe-B-alloy-derived Fe-based bulk metallic glasses, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1479-1
    [17] V. V. Ravikumar and  S. Kumaran, Improved strength and ductility of high alloy containing Al-12Zn-3Mg-2.5Cu alloy by combining non-isothermal step rolling and cold rolling, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1393-6
    [18] Chun-fa Liao, Yun-fen Jiao, Xu Wang, Bo-qing Cai, Qiang-chao Sun, and  Hao Tang, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1493-3
    [19] A. R. Sufizadeh and  S. A. A. Akbari Mousavi, Microstructures and mechanical properties of dissimilar Nd:YAG laser weldments of AISI4340 and AISI316L steels, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1435-0
    [20] Dong-hua Tian, Zhen-chao Han, Ming-yong Wang, and  Shu-qiang Jiao, Direct electrochemical N-doping to carbon paper in Molten LiCl-KCl-Li3N, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2026-z
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(612) PDF downloads(20) Cited by()

Proportional views

Electrochemical deposition of Nd and Nd–Fe alloy from Cu6Nd alloy in NaCl–KCl–NdCl3 melt

  • Corresponding author:

    Qian Xu    E-mail: qianxu@shu.edu.cn

  • 1. State Key Laboratory of Advanced Special Steel, School of Material Science and Engineering, Shanghai University, Shanghai, 200072, China
  • 2. Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
  • 3. Department of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China

Abstract: Electrorefining is an effective way to separate metals from corresponding alloys. To obtain Nd from Cu6Nd alloy, cyclic voltammetry and square wave voltammetry were conducted to investigate the reduction behaviour of Nd3+ and the anode dissolution behaviour of Cu6Nd in NaCl-KCl-0.5mol% NdCl3 melt at 1023 K. According to the analysis of the electrochemical behaviour, the cell voltage was determined to be between 0.3 V and 1.2 V for separating Nd from Cu6Nd. After electrolysis at 0.6 V for 4 h, the Nd was found at the surface of the Mo cathode without any Cu. For Fe cathode, the deposition with atom ratio Nd:Fe=1:1 was formed on the surface of the Fe electrode. However, in the experiment terms, the low current density of separation is still a great challenge and needs to be solved.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return