Cite this article as:

Research Article

Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al-Mg joints

+ Author Affiliations
  • Received: 27 May 2020Revised: 5 July 2020Accepted: 7 July 2020Available online: 9 July 2020
  • In this study, the butt welds of 4 mm thick 5A06 aluminum alloy plates were produced by the developed adjustable-gap bobbin tool friction stir welding at three welding speeds of 200, 300, 400 mm/min. The microstructure was studied by using an optical microscope and electron backscatter diffraction (EBSD). Tensile tests and microhardness measurements were performed to identify the effect of welding speed on the joint mechanical properties. It is revealed that sound joints could be produced at a welding speed of 200 mm/min while voids are present at different positions of the joints as the welding speed increases. The EBSD result shows that the grain size, high angle grain boundaries (HAGBs) and density of geometrically-necessary dislocations (GNDs) in different regions of the joint vary depending on the recovery and recrystallization behavior. Specific attention was given to the relationship between the local microstructure and mechanical properties. Microhardness measurements show that the average hardness of the SZ is higher than that of the base material, which is almost not affected by the welding speed. The tensile strength of the joint decrease with increasing the welding speed, and the maximal strength efficiency reaches 99%.
  • 加载中
  •  

  • [1] V.T. Gaikwad,M.K. Mishra,V.D. Hiwarkar, and R.K.P. Singh, Microstructure and mechanical properties of friction welded carbon steel (EN24) and nickel-based superalloy (IN718), Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2008-1
    [2] Behrouz Bagheri,Mahmoud Abbasi, and Amin Abdollahzadeh, Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2085-1
    [3] Dong Wu,Wen-ya Li,Qiang Chu,Yang-fan Zou,Xi-chang Liu, and Yan-jun Gao, Analysis of local microstructure and strengthening mechanisms in adjustable-gap bobbin tool friction stir welds of Al-Mg, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-021-2254-x
    [4] Xiao-feng Wang, Ming-xing Guo, Cun-qiang Ma, Jian-bin Chen, Ji-shan Zhang, and  Lin-zhong Zhuang, Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1645-0
    [5] Hamed Jamshidi Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper-nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1682-8
    [6] Ali Shamsipur, Amir Anvari, and  Ahmad Keyvani, Improvement of microstructure and corrosion properties of friction stir welded AA5754 by adding Zn interlayer, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1646-z
    [7] Dong-tao Wang, Hai-tao Zhang, Lei Li, Hai-lin Wu, Ke Qin, and  Jian-zhong Cui, The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al-Mg2Si in situ composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1659-7
    [8] Tevfik Küçükömeroğlu, Semih M. Aktarer, Güven İpekoğlu, and  Gürel Çam, Microstructure and mechanical properties of friction-stir welded St52 steel joints, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1700-x
    [9] Hong-xiang Li, Xin-yu Nie, Zan-bing He, Kang-ning Zhao, Qiang Du, Ji-shan Zhang, and  Lin-zhong Zhuang, Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1534-y
    [10] Xiu-ying Ni, Jun Zhao, Jia-lin Sun, Feng Gong, and  Zuo-li Li, Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1466-6
    [11] M. Sarkari Khorrami, M. Kazeminezhad, Y. Miyashita, and  A. H. Kokabi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1408-3
    [12] Xin-bo Liu, Feng-bin Qiao, Li-jie Guo, and  Xiong-er Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1391-8
    [13] Ji-hong Dong, Chong Gao, Yao Lu, Jian Han, Xiang-dong Jiao, and  Zhi-xiong Zhu, Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024-T3 aluminum alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1392-7
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1145) PDF downloads(24) Cited by()

Proportional views

Impact of travel speed on the microstructure and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al-Mg joints

  • Corresponding author:

    Wen-ya Li    E-mail: liwy@nwpu.edu.cn

  • 1. State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Travel Technologies, Northwestern Polytechnical University, Xi'an 710072, China
  • 2. Capital Aerospace Machinery Company, Beijing 100076, China
  • 3. Department of Mechanical Engineering, Hellenic Mediterranean University, Heraklion, Crete 71004, Greece

Abstract: In this study, the butt welds of 4 mm thick 5A06 aluminum alloy plates were produced by the developed adjustable-gap bobbin tool friction stir welding at three welding speeds of 200, 300, 400 mm/min. The microstructure was studied by using an optical microscope and electron backscatter diffraction (EBSD). Tensile tests and microhardness measurements were performed to identify the effect of welding speed on the joint mechanical properties. It is revealed that sound joints could be produced at a welding speed of 200 mm/min while voids are present at different positions of the joints as the welding speed increases. The EBSD result shows that the grain size, high angle grain boundaries (HAGBs) and density of geometrically-necessary dislocations (GNDs) in different regions of the joint vary depending on the recovery and recrystallization behavior. Specific attention was given to the relationship between the local microstructure and mechanical properties. Microhardness measurements show that the average hardness of the SZ is higher than that of the base material, which is almost not affected by the welding speed. The tensile strength of the joint decrease with increasing the welding speed, and the maximal strength efficiency reaches 99%.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return