Cite this article as:

Research Article

Microstructure and phase elemental distribution in high-boron multi-component cast irons

+ Author Affiliations
  • Received: 25 May 2020Revised: 5 July 2020Accepted: 7 July 2020Available online: 9 July 2020
  • The novel cast irons of nominal chemical composition (wt.%) 0.7C-5W-5Mo-5V-10Cr-2.5Ti were fabricated with the additions of 1.6 wt.% B and 2.7 wt.% B. The aim of this work was a study of the boron’s effect on the alloys’ structural state and phase elemental distribution with respect to the formation of wear-resistant structure constituents. It was found that the alloy containing 1.6 % B was composed of three different eutectics: (a) “M2(C,B)5+ferrite” having a “Chinese Script” morphology (89.8 vol. %), (b) “M7(C,B)3+Austenite” having a “Rosette” morphology, and (c) “M3C+Austenite” having a “Ledeburite”-shaped morphology (2.7 vol. %). With a boron content of 2.7 wt.%, the bulk hardness increased from 31 HRC to 38.5 HRC. The primary carboborides M2(C,B)5 with average microhardness of 2797 HV appeared in the structure with a volume fraction of 17.6 vol.%. The volume fraction of eutectics (a) and (b, c) decreased to 71.2 vol.% and 3.9 vol. %, respectively. The matrix was “ferrite/austenite” for 1.6 wt.% B and “ferrite/pearlite” for 2.7 wt.% B. Both cast irons contained compact precipitates of carbide (Ti,M)C and carboboride (Ti,M)(C,В) with a volume fraction of 7.3-7.5 vol. %. The elemental phase distributions, discussed based on EDX-analysis and the appropriate phase formulae, are presented.
  • 加载中
  •  

  • [1] Cheng-bin Wei,Xing-hao Du,Yi-ping Lu,Hui Jiang,Ting-ju Li, and Tong-min Wang, Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2042-z
    [2] Xiang-peng Zhang,Hong-xia Wang,Li-ping Bian,Shao-xiong Zhang,Yong-peng Zhuang,Wei-li Cheng, and Wei Liang, Microstructure evolution and mechanical properties of Mg-9Al-1Si-1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2123-z
    [3] Min Zhang,Jin-xiong Hou,Hui-jun Yang,Ya-qin Tan,Xue-jiao Wang,Xiao-hui Shi,Rui-peng Guo, and Jun-wei Qiao, Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2084-2
    [4] Wei Long,Song Zhang,Yi-long Liang, and Mei-gui Ou, Influence of multi-stage heat treatment on the microstructure and mechanical properties of TC21 titanium alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1996-1
    [5] Shahin Arshadi Rastabi and Masoud Mosallaee, Effect of multi-pass friction stir processing and Mg addition on microstructure and tensile properties of Al-1050 alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2074-4
    [6] Qiu-wei Xing,Jiang Ma, and Yong Zhang, Phase thermal stability and mechanical properties analyses of (Cr,Fe,V)–(Ta,W) multiple-based elemental system using a compositional gradient film, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2063-7
    [7] Jiao-jiao Yi,Fu-yang Cao,Ming-qin Xu,Lin Yang,Lu Wang, and Long Zeng, Two refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi: Phase, microstructure and compressive properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2214-x
    [8] Wen-bo Luo, Zhi-yong Xue, and  Wei-min Mao, Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1799-4
    [9] Siyi Li, Marco de Werk, Louis St-Pierre, and  Mustafa Kumral, Dimensioning a stockpile operation using principal component analysis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1849-y
    [10] Kai Chen, Shu-yuan Rui, Fa Wang, Jian-xin Dong, and  Zhi-hao Yao, Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1802-0
    [11] Jia-hong Zhang, Shu-ming Xing, Xiao-hui Ao, Peng Sun, and  Ru-fen Wang, Effect of Ca modification on the elemental composition, microstructure and tensile properties of Al-7Si-0.3Mg alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1838-1
    [12] Rowaid Al-khazraji, Ya-qiong Li, and  Li-feng Zhang, Boron separation from Si-Sn alloy by slag treatment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1698-0
    [13] Guang Wang, Qing-guo Xue, and  Jing-song Wang, Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1650-3
    [14] Hong-xiang Li, Shi-kai Qin, Ying-zhong Ma, Jian Wang, Yun-jin Liu, and  Ji-shan Zhang, Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1628-1
    [15] Bao-guang Wang, Wen-hui Yang, Hong-ye Gao, and  Wen-huai Tian, Microstructure and phase composition of hypoeutectic Te–Bi alloy as evaporation source for photoelectric cathode, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1605-8
    [16] Xiao-feng Wang, Ming-xing Guo, Cun-qiang Ma, Jian-bin Chen, Ji-shan Zhang, and  Lin-zhong Zhuang, Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1645-0
    [17] Wei-dong Tang, Xiang-xin Xue, Song-tao Yang, Li-heng Zhang, and  Zhuang Huang, Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high-chromium vanadium–titanium magnetite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1636-1
    [18] Chun-fu Kuang, Zhi-wang Zheng, Min-li Wang, Quan Xu, and  Shen-gen Zhang, Effect of hot-dip galvanizing processes on the microstructure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1530-2
    [19] Z. M. Sheggaf, R. Ahmad, M. B. A. Asmael, and  A. M. M. Elaswad, Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1523-1
    [20] Xian-fei Ding, Xiao-zheng Li, Qiang Feng, Warkentin Matthias, and  Shi-yao Huang, Microstructure evolution in grey cast iron during directional solidification, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1474-6
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(810) PDF downloads(5) Cited by()

Proportional views

Microstructure and phase elemental distribution in high-boron multi-component cast irons

  • Corresponding author:

    Vasily G. Efremenko    E-mail: vgefremenko@gmail.com

  • 1. Pryazovskyi State Technical University, Mariupol 87555, Ukraine
  • 2. Muroran Institute of Technology, Muroran 050-8585, Japan

Abstract: The novel cast irons of nominal chemical composition (wt.%) 0.7C-5W-5Mo-5V-10Cr-2.5Ti were fabricated with the additions of 1.6 wt.% B and 2.7 wt.% B. The aim of this work was a study of the boron’s effect on the alloys’ structural state and phase elemental distribution with respect to the formation of wear-resistant structure constituents. It was found that the alloy containing 1.6 % B was composed of three different eutectics: (a) “M2(C,B)5+ferrite” having a “Chinese Script” morphology (89.8 vol. %), (b) “M7(C,B)3+Austenite” having a “Rosette” morphology, and (c) “M3C+Austenite” having a “Ledeburite”-shaped morphology (2.7 vol. %). With a boron content of 2.7 wt.%, the bulk hardness increased from 31 HRC to 38.5 HRC. The primary carboborides M2(C,B)5 with average microhardness of 2797 HV appeared in the structure with a volume fraction of 17.6 vol.%. The volume fraction of eutectics (a) and (b, c) decreased to 71.2 vol.% and 3.9 vol. %, respectively. The matrix was “ferrite/austenite” for 1.6 wt.% B and “ferrite/pearlite” for 2.7 wt.% B. Both cast irons contained compact precipitates of carbide (Ti,M)C and carboboride (Ti,M)(C,В) with a volume fraction of 7.3-7.5 vol. %. The elemental phase distributions, discussed based on EDX-analysis and the appropriate phase formulae, are presented.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return