Cite this article as:

Research Article

Solid state reaction of CaO-V2O5 mixture: A fundamental study for the vanadium extraction process

+ Author Affiliations
  • Received: 28 April 2020Revised: 4 July 2020Accepted: 6 July 2020Available online: 9 July 2020
  • The aim of this study was to investigate the phase transformation and kinetics of the solid-state reaction of CaO-V2O5, which is the predominant binary mixture involved in the vanadium recovery process. Thermal analysis, X-ray diffraction, scanning electron microscope and energy dispersive spectrometry were used to characterize the solid-state reaction of the samples. The extent of the solid reaction was derived using the preliminary quantitative phase analysis of the X-ray diffractograms. The results indicate that the solid reaction of CaO-V2O5 mixture is significantly influenced by the reaction temperature and CaO/V2O5 mole ratio. The transformation of calcium vanadates goes through a step-by-step reaction of CaO-V2O5, CaO-CaV2O6, and CaO-Ca2V2O7 depending on the CaO/V2O5 mole ratio. The kinetic data of the solid reaction of CaO-V2O5 (1:1) mixture was found to follow second order reaction model. The activation energy (Eα) and the pre-exponential factor (A) were determined to be 145.38 kJ/mol, and 3.67×108 min-1, respectively.
  • 加载中
  •  

  • [1] Yun Guo,Hong-yi Li,Yi-heng Yuan,Jie Huang,Jiang Diao,Gang Li, and Bing Xie, Microemulsion leaching of vanadium from sodium roasted vanadium slag by fusion of leaching and extraction processes, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2105-1
    [2] Xiao-yi Shen,Hong-mei Shao,Ji-wen Ding,Yan Liu,Hui-min Gu, and Yu-chun Zhai, Zinc extraction from zinc oxidized ore using (NH4)2SO4 roasting−leaching process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2015-2
    [3] Hai-yan Yu,Xiao-lin Pan,Yong-pan Tian, and Gan-feng Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1951-1
    [4] K. Chandrakanta,Rasmita Jena,Pikesh Pal,Md. Faruck Abdullah,Somdatta D. Kaushik, and Anil K. Singh, Effect of Co substitution on the structural, dielectric and optical properties of KBiFe2O5Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2110-4
    [5] Jing Zhou,Dan-dan Nie,Xian-bo Jin, and Wei Xiao, Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2050-z
    [6] Bo Wang,Chao-yi Chen,Jun-qi Li,Lin-zhu Wang,Yuan-pei Lan, and Shi-yu Wang, Solid oxide membrane-assisted electrolytic reduction of Cr2O3 in molten CaCl2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2141-x
    [7] Chen-yang Xu,Cui Wang,Ren-ze Xu,Jian-liang Zhang, and Ke-xin Jiao, Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2187-9
    [8] Betül Kafkaslıoğlu Yıldız, Hüseyin Yılmaz, and  Yahya Kemal Tür, Influence of nickel addition on the microstructure and mechanical properties of Al2O3-5vol%ZrO2 ceramic composites prepared via precipitation method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1792-y
    [9] Qi-qiang Mou, Jian-li Li, Qiang Zeng, and  Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1822-9
    [10] S. M. A. Haghi, S. A. Sajjadi, and  A. Babakhani, In-situ fabrication of Al(Zn)-Al2O3 graded composite using the aluminothermic reaction during hot pressing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1632-5
    [11] Zhi-yong Liu, Ying Cheng, Yan-xiang Li, Xu Zhou, Xiang Chen, and  Ning-zhen Wang, Shape formation of closed-cell aluminum foam in solid–liquid–gas coexisting state, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1647-y
    [12] Wei Li, Nan Wang, Gui-qin Fu, Man-sheng Chu, and  Miao-yong Zhu, Effect of Cr2O3 addition on the oxidation induration mechanism of Hongge vanadium titanomagnetite pellets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1583-x
    [13] Zhi-yu Chang, Ping Wang, Jian-liang Zhang, Ke-xin Jiao, Yue-qiang Zhang, and  Zheng-jian Liu, Effect of CO2 and H2O on gasification dissolution and deep reaction of coke, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1694-4
    [14] Sheng-chao Duan, Chuang Li, Han-jie Guo, Jing Guo, Shao-wei Han, and  Wen-sheng Yang, Investigation of the kinetic mechanism of the demanganization reaction between carbon-saturated liquid iron and CaF2-CaO-SiO2-based slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1584-9
    [15] Hai-xia Qin, Yong Li, Li-xiong Bai, Meng-long Long, Wen-dong Xue, and  Jun-hong Chen, Reaction mechanism for in-situ β-SiAlON formation in Fe3Si-Si3N4-Al2O3 composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1411-8
    [16] Mohammad Baghani, Mahmood Aliofkhazraei, and  Mehdi Askari, Cu-Zn-Al2O3 nanocomposites:study of microstructure,corrosion,and wear properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1427-0
    [17] Xin Lu, Takahiro Miki, and  Tetsuya Nagasaka, Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1375-8
    [18] Shang-hao Tong, Yong Li, Ming-wei Yan, Peng Jiang, Jia-jia Ma, and  Dan-dan Yue, In situ reaction mechanism of MgAlON in Al-Al2O3-MgO composites at 1700℃ under flowing N2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1496-0
    [19] Jian-fang Lü, Zhe-nan Jin, Hong-ying Yang, Lin-lin Tong, Guo-bao Chen, and  Fa-xin Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1459-5
    [20] Bing-wei Luo, Jie Zhou, Peng-peng Bai, Shu-qi Zheng, Teng An, and  Xiang-li Wen, Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2-H2O-CO2 system:products, reaction kinetics, and pitting sensitivity, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1447-9
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(521) PDF downloads(9) Cited by()

Proportional views

Solid state reaction of CaO-V2O5 mixture: A fundamental study for the vanadium extraction process

  • Corresponding authors:

    Jun-yi Xiang    E-mail: xiangjunyi126@126.com

    Xue-wei Lv    E-mail: lvxuewei@163.com

  • 1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
  • 2. College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
  • 3. Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and Advanced Materials, Chongqing University, Chongqing 400044, China

Abstract: The aim of this study was to investigate the phase transformation and kinetics of the solid-state reaction of CaO-V2O5, which is the predominant binary mixture involved in the vanadium recovery process. Thermal analysis, X-ray diffraction, scanning electron microscope and energy dispersive spectrometry were used to characterize the solid-state reaction of the samples. The extent of the solid reaction was derived using the preliminary quantitative phase analysis of the X-ray diffractograms. The results indicate that the solid reaction of CaO-V2O5 mixture is significantly influenced by the reaction temperature and CaO/V2O5 mole ratio. The transformation of calcium vanadates goes through a step-by-step reaction of CaO-V2O5, CaO-CaV2O6, and CaO-Ca2V2O7 depending on the CaO/V2O5 mole ratio. The kinetic data of the solid reaction of CaO-V2O5 (1:1) mixture was found to follow second order reaction model. The activation energy (Eα) and the pre-exponential factor (A) were determined to be 145.38 kJ/mol, and 3.67×108 min-1, respectively.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return