Jun-yi Xiang, Xin Wang, Gui-shang Pei, Qing-yun Huang, and Xue-wei Lv, Solid state reaction of CaO-V2O5 mixture: A fundamental study for the vanadium extraction process, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2136-7
Cite this article as:
Jun-yi Xiang, Xin Wang, Gui-shang Pei, Qing-yun Huang, and Xue-wei Lv, Solid state reaction of CaO-V2O5 mixture: A fundamental study for the vanadium extraction process, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2136-7
Research Article

Solid state reaction of CaO-V2O5 mixture: A fundamental study for the vanadium extraction process

+ Author Affiliations
  • Received: 28 April 2020Revised: 4 July 2020Accepted: 6 July 2020Available online: 9 July 2020
  • The aim of this study was to investigate the phase transformation and kinetics of the solid-state reaction of CaO-V2O5, which is the predominant binary mixture involved in the vanadium recovery process. Thermal analysis, X-ray diffraction, scanning electron microscope and energy dispersive spectrometry were used to characterize the solid-state reaction of the samples. The extent of the solid reaction was derived using the preliminary quantitative phase analysis of the X-ray diffractograms. The results indicate that the solid reaction of CaO-V2O5 mixture is significantly influenced by the reaction temperature and CaO/V2O5 mole ratio. The transformation of calcium vanadates goes through a step-by-step reaction of CaO-V2O5, CaO-CaV2O6, and CaO-Ca2V2O7 depending on the CaO/V2O5 mole ratio. The kinetic data of the solid reaction of CaO-V2O5 (1:1) mixture was found to follow second order reaction model. The activation energy (Eα) and the pre-exponential factor (A) were determined to be 145.38 kJ/mol, and 3.67×108 min-1, respectively.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (1529) PDF downloads(16) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return