Cheng Yang, Jia-liang Zhang, Qian-kun Jing, Yu-bo Liu, Yong-qiang Chen, and Cheng-yan Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1478-1487. https://doi.org/10.1007/s12613-020-2137-6
Cite this article as:
Cheng Yang, Jia-liang Zhang, Qian-kun Jing, Yu-bo Liu, Yong-qiang Chen, and Cheng-yan Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, pp. 1478-1487. https://doi.org/10.1007/s12613-020-2137-6
Research Article

Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process

+ Author Affiliations
  • Corresponding authors:

    Jia-liang Zhang    E-mail: jialiangzhang@ustb.edu.cn

    Cheng-yan Wang    E-mail: chywang@yeah.net

  • Received: 5 May 2020Revised: 20 June 2020Accepted: 6 July 2020Available online: 9 July 2020
  • The recycling of spent LiFePO4 batteries has received extensive attention due to its environmental impact and economic benefit. In the pretreatment process of spent LiFePO4 batteries, the separation of active materials and current collectors determines the difficulty of the recovery process and product quality. In this work, a facile and efficient pretreatment process is first proposed. After only freezing the electrode pieces and immersing them in boiling water, LiFePO4 materials were peeled from the Al foil. Then, after roasting under an inert atmosphere and sieving, all the cathode and anode active materials were easily and efficiently separated from the Al and Cu foils. The active materials were subjected to acid leaching, and the leaching solution was further used to prepare FePO4 and Li2CO3. Finally, the battery-grade FePO4 and Li2CO3 were used to re-synthesize LiFePO4/C via the carbon thermal reduction method. The discharge capacities of re-synthesized LiFePO4/C cathode were 144.2, 139.0, 133.2, 125.5, and 110.5 mA·h·g−1 at rates of 0.1, 0.5, 1, 2, and 5 C, which satisfies the requirement for middle-end LiFePO4 batteries. The whole process is environmental and has great potential for industrial-scale recycling of spent lithium-ion batteries.

  • loading
  • [1]
    A. Paolella, G. Bertoni, P. Hovington, Z.M. Feng, R. Flacau, M. Prato, M. Colombo, S. Marras, L. Manna, S. Turner, G. Van Tendeloo, A. Guerfi, G.P. Demopoulos, and K. Zaghib, Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4, Nano Energy, 16(2015), p. 256. doi: 10.1016/j.nanoen.2015.06.005
    [2]
    B.B. Wei, Y.B. Wu, F.Y. Yu, and Y.N. Zhou, Preparation and electrochemical properties of carbon-coated LiFePO4 hollow nanofibers, Int. J. Miner. Metall. Mater., 23(2016), No. 4, p. 474. doi: 10.1007/s12613-016-1258-4
    [3]
    A. Paolella, S. Turner, G. Bertoni, P. Hovington, R. Flacau, C. Boyer, Z.M. Feng, M. Colombo, S. Marras, M. Prato, L. Manna, A. Guerfi, G.P. Demopoulos, M. Armand, and K. Zaghib, Accelerated removal of Fe-antisite defects while nanosizing hydrothermal LiFePO4 with Ca2+, Nano Lett., 16(2016), No. 4, p. 2692. doi: 10.1021/acs.nanolett.6b00334
    [4]
    A. Mauger, C. Julien, A. Paolella, M. Armand, and K. Zaghib, Building better batteries in the solid state: A review, Materials, 12(2019), No. 23, p. 3892. doi: 10.3390/ma12233892
    [5]
    C.W. Sun, S. Rajasekhara, J.B. Goodenough, and F. Zhou, Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode, J. Am. Chem. Soc., 133(2011), No. 7, p. 2132. doi: 10.1021/ja1110464
    [6]
    F. Larouche, F. Tedjar, K. Amouzegar, G. Houlachi, P. Bouchard, G.P. Demopoulos, and K. Zaghib, Progress and status of hydrometallurgical and direct recycling of Li-ion batteries and beyond, Materials, 13(2020), No. 3, p. 801. doi: 10.3390/ma13030801
    [7]
    J.L. Zhang, J.T. Hu, Y.B. Liu, Q.K. Jing, C. Yang, Y.Q. Chen, and C.Y. Wang, Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries, ACS Sustainable Chem. Eng., 7(2019), No. 6, p. 5626. doi: 10.1021/acssuschemeng.9b00404
    [8]
    Y.X. Yang, X.H. Zheng, H.B. Cao, C.L. Zhao, X. Lin, P.G. Ning, Y. Zhang, W. Jin, and Z. Sun, A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation, ACS Sustainable Chem. Eng., 5(2017), No. 11, p. 9972. doi: 10.1021/acssuschemeng.7b01914
    [9]
    Q.F. Sun, X.L. Li, H.Z. Zhang, D.W. Song, X.X. Shi, J.S. Song, C.L. Li, and L.Q. Zhang, Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route, J. Alloys Compd., 818(2020), art. No. 153292. doi: 10.1016/j.jallcom.2019.153292
    [10]
    A. Mauger, C.M. Julien, A. Paolella, M. Armand, and K. Zaghib, A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives, Mater. Sci. Eng., R, 134(2018), p. 1. doi: 10.1016/j.mser.2018.07.001
    [11]
    J.L. Zhang, J.T. Hu, W.J. Zhang, Y.Q. Chen, and C.Y. Wang, Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries, J. Cleaner Prod., 204(2018), p. 437. doi: 10.1016/j.jclepro.2018.09.033
    [12]
    H. Setiawan, H. Petrus, and I. Perdana, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner., Metall. Mater., 26(2019), No. 1, p. 98. doi: 10.1007/s12613-019-1713-0
    [13]
    Y.L. Yao, M.Y. Zhu, Z. Zhao, B.H. Tong, Y.Q. Fan, and Z.S. Hua, Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review, ACS Sustainable Chem. Eng., 6(2018), No. 11, p. 13611. doi: 10.1021/acssuschemeng.8b03545
    [14]
    W.Q. Wang, Y.C. Zhang, L. Zhang, and S.M. Xu, Cleaner recycling of cathode material by in-situ thermite reduction, J. Cleaner Prod., 249(2020), art. No. 119340. doi: 10.1016/j.jclepro.2019.119340
    [15]
    L. Sun and K.Q. Qiu, Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries, J. Hazard. Mater., 194(2011), p. 378. doi: 10.1016/j.jhazmat.2011.07.114
    [16]
    Y. Yang, G.Y. Huang, S.M. Xu, Y.H. He, and X. Liu, Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries, Hydrometallurgy, 165(2016), p. 390. doi: 10.1016/j.hydromet.2015.09.025
    [17]
    X.X. Zhang, Q. Xue, L. Li, E. Fan, F. Wu, and R.J. Chen, Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries, ACS Sustainable Chem. Eng., 4(2016), No. 12, p. 7041. doi: 10.1021/acssuschemeng.6b01948
    [18]
    L. Chen, X.C. Tang, Y. Zhang, L.X. Li, Z.W. Zeng, and Y. Zhang, Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, 108(2011), No. 1-2, p. 80. doi: 10.1016/j.hydromet.2011.02.010
    [19]
    D.A. Ferreira, L.M.Z. Prados, D. Majuste, and M.B. Mansur, Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries, J. Power Sources, 187(2009), No. 1, p. 238. doi: 10.1016/j.jpowsour.2008.10.077
    [20]
    L. Li, J. Lu, Y. Ren, X.X. Zhang, R.J. Chen, F. Wu, and K. Amine, Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries, J. Power Sources, 218(2012), p. 21. doi: 10.1016/j.jpowsour.2012.06.068
    [21]
    L. Li, R. Chen, F. Sun, F. Wu, and J.R. Liu, Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process, Hydrometallurgy, 108(2011), No. 3-4, p. 220. doi: 10.1016/j.hydromet.2011.04.013
    [22]
    J.P. Chen, Q.W. Li, J.S. Song, D.W. Song, L.Q. Zhang, and X.X. Shi, Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries, Green Chem., 18(2016), No. 8, p. 2500. doi: 10.1039/C5GC02650D
    [23]
    X.L. Li, J. Zhang, D.W. Song, J.S. Song, and L.Q. Zhang, Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries, J. Power Sources, 345(2017), p. 78. doi: 10.1016/j.jpowsour.2017.01.118
    [24]
    W. Wang and Y.F. Wu, An overview of recycling and treatment of spent LiFePO4 batteries in China, Resour. Conserv. Recycl., 127(2017), p. 233. doi: 10.1016/j.resconrec.2017.08.019
    [25]
    X. Song, T. Hu, C. Liang, H.L. Long, L. Zhou, W. Song, L. You, Z.S. Wu, and J.W. Liu, Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method, RSC Adv., 7(2017), No. 8, p. 4783. doi: 10.1039/C6RA27210J
    [26]
    J.Z. Yu, X. Wang, M.Y. Zhou, and Q. Wang, A redox targeting-based material recycling strategy for spent lithium ion batteries, Energy Environ. Sci., 12(2019), No. 9, p. 2672. doi: 10.1039/C9EE01478K
    [27]
    Y. Dai, Z.D. Xu, D. Hua, H.N. Gu, and N. Wang, Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: an acid-free, efficient, and selective process, J. Hazard. Mater., 396(2020), art. No. 122707. doi: 10.1016/j.jhazmat.2020.122707
    [28]
    Y.X. Yang, X.Q. Meng, H.B. Cao, X. Lin, C.M. Liu, Y. Sun, Y. Zhang, and Z. Sun, Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process, Green Chem., 20(2018), No. 13, p. 3121. doi: 10.1039/C7GC03376A
    [29]
    D.C. Bian, Y.H. Sun, S. Li, Y. Tian, Z.H. Yang, X.M. Fan, and W.X. Zhang, A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers, Electrochim. Acta, 190(2016), p. 134. doi: 10.1016/j.electacta.2015.12.114
    [30]
    X. Wang, X.Y. Wang, R. Zhang, Y. Wang, and H.B. Shu, Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source, Waste Manage., 78(2018), p. 208. doi: 10.1016/j.wasman.2018.05.029
    [31]
    R.J. Zheng, L. Zhao, W.H. Wang, Y.L. Liu, Q.X. Ma, D.Y. Mu, R.H. Li, and C.S. Dai, Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method, RSC Adv., 6(2016), No. 49, p. 43613. doi: 10.1039/C6RA05477C
    [32]
    D. Zhou, X.C. Qiu, F. Liang, S. Cao, Y.C. Yao, X.P. Huang, W.H. Ma, B. Yang, and Y.N. Dai, Comparison of the effects of FePO4 and FePO4·2H2O as precursors on the electrochemical performances of LiFePO4/C, Ceram. Int., 43(2017), No. 16, p. 13254. doi: 10.1016/j.ceramint.2017.07.023
    [33]
    Q.K. Jing, J.L. Zhang, Y.B. Liu, C. Yang, B.Z. Ma, Y.Q. Chen, and C.Y. Wang, E-pH diagrams for the Li−Fe−P−H2O system from 298 to 473 K: Thermodynamic analysis and application to the wet chemical processes of the LiFePO4 cathode material, J. Phys. Chem. C, 123(2019), No. 23, p. 14207. doi: 10.1021/acs.jpcc.9b02074
    [34]
    B. Xu, P. Dong, J.G. Duan, D. Wang, X.S. Huang, and Y.J. Zhang, Regenerating the used LiFePO4 to high performance cathode via mechanochemical activation assisted V5+ doping, Ceram. Int., 45(2019), No. 9, p. 11792. doi: 10.1016/j.ceramint.2019.03.057
    [35]
    A.A. Salah, P. Jozwiak, J. Garbarczyk, K. Benkhouja, K. Zaghib, F. Gendron, and C.M. Julien, Local structure and redox energies of lithium phosphates with olivine-and Nasicon-like structures, J. Power Sources, 140(2005), No. 2, p. 370. doi: 10.1016/j.jpowsour.2004.08.029
    [36]
    C.M. Burba and R. Frech, Raman and FTIR spectroscopic study of LixFePO4 (0≤x≤1) , J. Electrochem. Soc., 151(2004), No. 7, p. A1032. doi: 10.1149/1.1756885
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(5153) PDF Downloads(236) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return