Cite this article as:

Research Article

Growth mechanism and photocatalytic evaluation of flower-like ZnO microstructures prepared with SDBS assistance

+ Author Affiliations
  • Received: 3 May 2020Revised: 15 June 2020Accepted: 7 July 2020Available online: 9 July 2020
  • Flower-like ZnO microstructures were successfully obtained by hydrothermal method employing ZnSO4/(NH4)2SO4 as raw material.The operating parameters including hydrothermal temperature, OH-/Zn2+ molar ratio, time and additive amount of dispersant on the phase structure and micromorphology of ZnO particles were investigated. The synthesis conditions of flower-like ZnO microstructures were hydrothermal temperature of 160ºC, OH-/Zn2+ molar ratio of 5:1, reaction time of 4 h, dispersant of 4 mL. Flower-like ZnO microstructures are comprised of hexagon shape ZnO rods arranged in the form of radiative way. The degradation experiments of Rhodamine B (RhB) with a degradation efficiency of 97.6% exposure for 4 h showed that flower-like ZnO microstructures exhibited an excellent photocatalytic capacity in sunshine. The growth mechanism of flower-like ZnO microstructures was schematically presented.
  • 加载中
  •  

  • [1] Sin-Ling Chiam,Anh Thi Le,Swee-Yong Pung, and Fei-Yee Yeoh, Effect of pH on the Photocatalytic Removal of Silver Ions by β-MnO2 particles, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2062-8
    [2] Lu-ming Chen,Yu-lan Zhen,Guo-hua Zhang,De-sheng Chen,Li-na Wang,Hong-xin Zhao,Fan-cheng Meng, and Tao Qi, Carbothermic reduction of vanadium titanomagnetite with the assistance of sodium carbonate, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2160-7
    [3] Muntadher I. Rahmah,Raad S. Sabry, and Wisam J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composite with superhydrophobicity, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2096-y
    [4] Hai-xia Liu,Xu-guang Wei,Tian-duo Li,Zai-yong Jiang,Qing-fen Niu, and Hai-liang Zhou, Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2033-0
    [5] C. D. Gómez-Esparza, A. Duarte-Moller, C. López-Díaz de León, R. Martínez-Sánchez, J. F. Hernández-Paz, and  C. A. Rodríguez-González, Influence of ZnO nanoparticles on the microstructure of a CoCrFeMoNi matrix via powder metallurgy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1863-0
    [6] C. D. Gómez-Esparza, R. Peréz-Bustamante, J. M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J. M. Olivares-Ramírez, and  A. Duarte-Moller, Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1771-3
    [7] Jian-wen Yu, Yue-xin Han, Yan-jun Li, and  Peng Gao, Growth behavior of the magnetite phase in the reduction of hematite via a fluidized bed, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1868-8
    [8] Xing Chen, Xin Liu, and  Kai Huang, Facile synthesis of flake-like dihydrate zinc oxalate particles, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1728-6
    [9] Yi-nan Shen, Yi Xing, Peng Jiang, Yong Li, Wen-dong Xue, Guo-xiang Yin, and  Xue-qin Hong, Corrosion resistance evaluation of highly dispersed MgO-MgAl2O4-ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1807-8
    [10] Zhe-nan Jin, Jian-fang Lü, Hong-ying Yang, and  Zhi-yuan Ma, Corrosion mechanism of magnesia-chromite refractories by ZnO-containing fayalite slags: Effect of funnel glass addition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1912-8
    [11] Nilay Çömez, Can Çivi, and  Hülya Durmuş, Reliability evaluation of hardness test methods of hardfacing coatings with hypoeutectic and hypereutectic microstructures, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1866-x
    [12] Li-zi He, Yi-heng Cao, Yi-zhou Zhou, and  Jian-zhong Cui, Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1547-1
    [13] Shuang-jiang He, Yan-bin Jiang, Jian-xin Xie, Yong-hua Li, and  Li-juan Yue, Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1611-x
    [14] Labani Mustafi, M. M. Rahman, Mohammad Nur E Alam Al Nasim, Mohammad Asaduzzaman Chowdhury, and  M. H. Monir, Deposition behavior and tribological properties of diamond-like carbon coatings on stainless steels via chemical vapor deposition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1687-3
    [15] Monideepa Mukherjee, Sumit Tiwari, and  Basudev Bhattacharya, Evaluation of factors affecting the edge formability of two hot rolled multiphase steels, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1563-1
    [16] S. Arunkumar, P. Kumaravel, C. Velmurugan, and  V. Senthilkumar, Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1549-z
    [17] Xiao-hui Ao, Shu-ming Xing, Bai-shui Yu, and  Qing-you Han, Effect of Ce addition on microstructures and mechanical properties of A380 aluminum alloy prepared by squeeze-casting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1602-y
    [18] Yu Han, Shuang-yu Liu, Lei Cui, Li Xu, Jian Xie, Xue-Ke Xia, Wen-Kui Hao, Bo Wang, Hui Li, and  Jie Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1550-6
    [19] A. R. Sufizadeh and  S. A. A. Akbari Mousavi, Microstructures and mechanical properties of dissimilar Nd:YAG laser weldments of AISI4340 and AISI316L steels, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1435-0
    [20] Song Chen and  De-gui Zhu, Influence of sintering temperature on the phases and photoelectric characteristics of BiOCl/ZnO composite powders, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1537-8
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(486) PDF downloads(6) Cited by()

Proportional views

Growth mechanism and photocatalytic evaluation of flower-like ZnO microstructures prepared with SDBS assistance

  • Corresponding author:

    Hong-mei Shao    E-mail: shaohm@sylu.edu.cn

  • 1. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
  • 2. School of Metallurgy, Northeastern University, Shenyang 110819, China

Abstract: Flower-like ZnO microstructures were successfully obtained by hydrothermal method employing ZnSO4/(NH4)2SO4 as raw material.The operating parameters including hydrothermal temperature, OH-/Zn2+ molar ratio, time and additive amount of dispersant on the phase structure and micromorphology of ZnO particles were investigated. The synthesis conditions of flower-like ZnO microstructures were hydrothermal temperature of 160ºC, OH-/Zn2+ molar ratio of 5:1, reaction time of 4 h, dispersant of 4 mL. Flower-like ZnO microstructures are comprised of hexagon shape ZnO rods arranged in the form of radiative way. The degradation experiments of Rhodamine B (RhB) with a degradation efficiency of 97.6% exposure for 4 h showed that flower-like ZnO microstructures exhibited an excellent photocatalytic capacity in sunshine. The growth mechanism of flower-like ZnO microstructures was schematically presented.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return