Cite this article as:

Research Article

A new electrochemical process on the recovery metallic Mn from waste LiMn2O4 based Li-ion batteries in NaCl-CaCl2 melts

+ Author Affiliations
  • Received: 27 May 2020Revised: 9 July 2020Accepted: 14 July 2020Available online: 16 July 2020
  • A new method for the recovery of Mn is proposed via direct electrochemical reduction of LiMn2O4 from the waste lithium-ion batteries in NaCl-CaCl2 melts at 750℃. The results show the reduction process of LiMn2O4 by electrochemical methods on the coated electrode surface are in three steps, Mn(IV) → Mn(III) → Mn(II) → Mn. The products of electro-deoxidation are CaMn2O4, MnO, (MnO)x(CaO)1-x and Mn. Metal Mn appears when the electrolytic voltage increased to 2.6 V. Increasing the voltage could promote the deoxidation reaction process. With the advancement of the three-phase interline(3PI), the electric deoxygenation gradually proceeds from the outward to core. With the high voltage, the kinetic process of the reduction reaction is accelerated, and double 3PI in different stages are generated.
  • 加载中
  •  

  • [1] Liu-ye Sun,Bo-rui Liu,Tong Wu,Guan-ge Wang,Qing Huang,Yue-feng Su, and Wu Feng, Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2115-z
    [2] Bo Wang,Chao-yi Chen,Jun-qi Li,Lin-zhu Wang,Yuan-pei Lan, and Shi-yu Wang, Solid oxide membrane-assisted electrolytic reduction of Cr2O3 in molten CaCl2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2141-x
    [3] Thongsuk Sichumsaeng,Nutthakritta Phromviyo,Supree Pinitsoontorn,Pinit Kidkhunthod,Narong Chanlek, and Santi Maensiri, Synthesis, characterization and magnetic properties of KFeO2 nanoparticles prepared by a simple egg-white solution route, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2194-x
    [4] Rui-qi Yang,Na Liang,Xuan-yu Chen,Long-wei Wang,Guo-xin Song,Yan-chen Ji,Na Ren,Ya-wei Lv,Jian Zhang, and Xin Yu, Sn/Sn3O4-x Heterostructure Rich in Oxygen Vacancy with Enhanced Visible Light Photocatalytic Oxidation Performance, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2131-z
    [5] Yi-wa Luo,Ming-yong Wang,Ji-guo Tu,Yu Jiang, and Shu-qiang Jiao, Removal of residual stress in porous Ti6Al4V by in situ double scanning process during laser additive manufacturing , Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2212-z
    [6] Xiao-yi Shen,Hong-mei Shao,Ji-wen Ding,Yan Liu,Hui-min Gu, and Yu-chun Zhai, Zinc extraction from zinc oxidized ore using (NH4)2SO4 roasting−leaching process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2015-2
    [7] Xiao-guang Liu,Qiu-shuo Mao,Yue Jiang,Yan Li,Jia-lin Sun, and Fei-xue Huang, Preparation of Al2O3 SiO2 composite aerogels and their preliminary Cu2+ absorption properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2111-3
    [8] Thongsuk Sichumsaeng,Nutthakritta Phromviyo, and Santi Maensiri, Influence of gas diffusion layer current collector on electrochemical performance of Ni(OH)2 nanostructures, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2174-1
    [9] Jie Luo,Xin Li,Fu-jie Zhang,Song Chen, and Ding Ren, 

    Sintering of monoclinic-SrAl2Si2Oceramics and their immobilization of Sr

    Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2056-6
    [10] Cheng Yang,Jia-liang Zhang,Qian-kun Jing,Yu-bo Liu,Yong-qiang Chen, and Cheng-yan Wang, Recovery and regeneration of LiFePO4 from spent lithium ion batteries via a novel pretreating process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2137-6
    [11] Xiao-chun Wen,Lei Guo,Qi-peng Bao, and Zhan-cheng Guo, Rapid Removal of the Copper Impurity from Bismuth-Copper Alloy Melts via Super-Gravity Separation, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2118-9
    [12] Li-fen Guo,Shi-yun Zhang,Jian Xie,Dong Zheng,Yuan Jin,Kang-yan Wang,Da-gao Zhuang,Wen-quan Zheng, and Xin-bing Zhao, Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1900-z
    [13] Azhar Iqbal, Long Chen, Yong Chen, Yu-xian Gao, Fang Chen, and  Dao-cong Li, Erratum to: Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1732-x
    [14] Hendrik Setiawan, Himawan Tri Bayu Murti Petrus, and  Indra Perdana, Reaction kinetics modeling for lithium and cobalt recovery from spent lithium-ion batteries using acetic acid, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1713-0
    [15] Yong Zhang, Zhao-hui Guo, Zi-yu Han, Xi-yuan Xiao, and  Chi Peng, Feasibility of aluminum recovery and MgAl2O4 spinel synthesis from secondary aluminum dross, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1739-3
    [16] Azhar Iqbal, Long Chen, Yong Chen, Yu-xian Gao, Fang Chen, and  Dao-cong Li, Lithium-ion full cell with high energy density using nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode and SiO-C composite anode, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1702-8
    [17] Yu Han, Shuang-yu Liu, Lei Cui, Li Xu, Jian Xie, Xue-Ke Xia, Wen-Kui Hao, Bo Wang, Hui Li, and  Jie Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1550-6
    [18] Le-ping Wang, Gang Chen, Qi-xin Shen, Guo-min Li, Shi-you Guan, and  Bing Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1653-0
    [19] Peng Jiang, Guo-xiang Yin, Ming-wei Yan, Jia-lin Sun, Bin Li, and  Yong Li, A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase:synthesis and physical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1412-7
    [20] Kai-lin Cheng, Dao-bin Mu, Bo-rong Wu, Lei Wang, Ying Jiang, and  Rui Wang, Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1413-6
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(502) PDF downloads(8) Cited by()

Proportional views

A new electrochemical process on the recovery metallic Mn from waste LiMn2O4 based Li-ion batteries in NaCl-CaCl2 melts

  • Corresponding author:

    Hui Li    E-mail: lh@ncst.edu.cn

  • College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China

Abstract: A new method for the recovery of Mn is proposed via direct electrochemical reduction of LiMn2O4 from the waste lithium-ion batteries in NaCl-CaCl2 melts at 750℃. The results show the reduction process of LiMn2O4 by electrochemical methods on the coated electrode surface are in three steps, Mn(IV) → Mn(III) → Mn(II) → Mn. The products of electro-deoxidation are CaMn2O4, MnO, (MnO)x(CaO)1-x and Mn. Metal Mn appears when the electrolytic voltage increased to 2.6 V. Increasing the voltage could promote the deoxidation reaction process. With the advancement of the three-phase interline(3PI), the electric deoxygenation gradually proceeds from the outward to core. With the high voltage, the kinetic process of the reduction reaction is accelerated, and double 3PI in different stages are generated.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return