Cite this article as:

Research Article

A study of gold leaching performance and mechanism by sodium dicyanamide

+ Author Affiliations
  • Received: 15 March 2020Revised: 22 July 2020Accepted: 24 July 2020Available online: 26 July 2020
  • In the present work, sodium dicyanamide (SD) was used as a leaching reagent for gold recovery, and the effects of SD dosage and solution pH on gold leaching performance were investigated. It was found that a gold recovery of 34.8% was obtained when SD was used as the sole leaching reagent at a dosage of 15 kg/t. It was also found that in the presence of a certain amount of potassium ferrocyanide (PF) in the SD solution, the gold recovery increased from 34.8% to 57.08%. The leaching kinetics of SD with and without PF was studied using the quartz crystal microbalance with dissipation (QCM-D) technique. According to the QCM-D results, the gold leaching rate increased from 4.03 ng/cm²∙min-1 to 39.99 ng/cm²∙min-1 when the SD concentration increased from 0 to 0.17 mol/L, and from 39.99 ng/cm²∙min-1 to 272.62 ng/cm²∙min-1 when 0.1 mol/L of PF was used in combination with SD. The pregnant solution in the leaching tests was characterized by X-ray photoelectron spectroscopy (XPS) and ESI-MS. The results indicated that Au and (N(CN)2)ˉ in the SD solution formed a series of metal complex ion, [AuNax(N(CN)2)(x+2)]ˉ (x = 1, 2, 3, or 4).
  • 加载中
  •  

  • [1] Hai-xia Liu,Meng-yuan Teng,Xu-guang Wei,Tian-duo Li,Zai-yong Jiang,Qing-fen Niu, and Xu-ping Wang, Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2033-0
    [2] Ya Wei,Yu Fu,Zhi-min Pan,Yi-chong Ma,Hong-xu Cheng,Qian-cheng Zhao,Hong Luo, and Xiao-gang Li, Study on influencing factors and mechanism of high-temperature oxidation of high-entropy alloy:A review, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-021-2257-7
    [3] Wei Xiao,Yan-ping Bao,Chao Gu,Min Wang,Yu Liu,Yong-sheng Huang, and Guang-tao Sun, Study on ultra high cycle fatigue fracture mechanism of high quality bearing steel with different deoxidization methods, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-021-2253-y
    [4] Peng Gao,Yong-hong Qin,Yue-xin Han,Yan-jun Li, and Si-ying Liu, Strengthening leaching effect of carlin-type gold via high-voltage pulsed discharge pretreatment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2012-5
    [5] He Zhou, Yong-sheng Song, Wen-juan Li, and  Kun Song, Electrochemical behavior of gold and its associated minerals in alkaline thiourea solutions, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1621-8
    [6] Shuang-hua Zhang, Ya-jie Zheng, Pan Cao, Chao-hui Li, Shen-zhi Lai, and  Xing-jun Wang, Process mineralogy characteristics of acid leaching residue produced in low-temperature roasting-acid leaching pretreatment process of refractory gold concentrates, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1664-x
    [7] Ya-feng Fu, Wan-zhong Yin, Bin Yang, Chuang Li, Zhang-lei Zhu, and  Dong Li, Effect of sodium alginate on reverse flotation of hematite and its mechanism, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1662-z
    [8] Dong Li, Wan-zhong Yin, Ji-wei Xue, Jin Yao, Ya-feng Fu, and  Qi Liu, Solution chemistry of carbonate minerals and its effects on the flotation of hematite with sodium oleate, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1457-7
    [9] Xiao-bin Qiu, Jian-kang Wen, Song-tao Huang, Hong-ying Yang, Mei-lin Liu, and  Biao Wu, New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1501-7
    [10] Yi-fan Zhang, Zhen Ji, Ke Chen, Bo-wen Liu, Cheng-chang Jia, and  Shan-wu Yang, Study on the preparation of Pt nanocapsules, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1384-7
    [11] Qian Li, Fang-zhou Ji, Bin Xu, Jian-jun Hu, Yong-bin Yang, and  Tao Jiang, Consolidation mechanism of gold concentrates containing sulfur and carbon during oxygen-enriched air roasting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1418-1
    [12] Pei-yang Shi, Cheng-jun Liu, Qing Zhao, and  Hao-nan Shi, Study on mechanisms of different sulfuric acid leaching technologies of chromite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1486-2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(1040) PDF downloads(14) Cited by()

Proportional views

A study of gold leaching performance and mechanism by sodium dicyanamide

  • Corresponding authors:

    Jue Kou    E-mail: koujue@ustb.edu.cn

    Yi Xing    E-mail: xingyi@ustb.edu.cn

  • 1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 2. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract: In the present work, sodium dicyanamide (SD) was used as a leaching reagent for gold recovery, and the effects of SD dosage and solution pH on gold leaching performance were investigated. It was found that a gold recovery of 34.8% was obtained when SD was used as the sole leaching reagent at a dosage of 15 kg/t. It was also found that in the presence of a certain amount of potassium ferrocyanide (PF) in the SD solution, the gold recovery increased from 34.8% to 57.08%. The leaching kinetics of SD with and without PF was studied using the quartz crystal microbalance with dissipation (QCM-D) technique. According to the QCM-D results, the gold leaching rate increased from 4.03 ng/cm²∙min-1 to 39.99 ng/cm²∙min-1 when the SD concentration increased from 0 to 0.17 mol/L, and from 39.99 ng/cm²∙min-1 to 272.62 ng/cm²∙min-1 when 0.1 mol/L of PF was used in combination with SD. The pregnant solution in the leaching tests was characterized by X-ray photoelectron spectroscopy (XPS) and ESI-MS. The results indicated that Au and (N(CN)2)ˉ in the SD solution formed a series of metal complex ion, [AuNax(N(CN)2)(x+2)]ˉ (x = 1, 2, 3, or 4).

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return