New insights into the flotation response of brucite and serpentine of different conditioning time: Surface dissolution behavior
-
Ya-feng Fu1,2),
-
Wan-zhong Yin2),
-
Chuan-yao Sun3),
-
Bin Yang2),
-
Jin Yao2),
-
Hong-liang Li1,4), ,
-
Chuang Li2), , and
-
Hyunjung Kim5)
+ Author Affiliations
-
1.
College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
-
2.
School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China
-
3.
State Key Laboratory of Mineral Processing, Beijing 102628, China
-
4.
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
-
5.
Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea
-
Received: 7 May 2020; Revised:
6 August 2020; Accepted:
7 August 2020; Available online:
10 August 2020
-
Abstract
Gangue minerals inadvertently dissolution frequently plays a detrimental role on the flotation of valuable minerals. In this paper, the effect of conditioning time on the flotation separation of brucite and serpentine was investigated. By analyzing the Mg2+ concentration, the relative content of elements, and pulp viscosity, the effect of mineral dissolution on the brucite flotation was studied. The artificial mixed mineral flotation results (with -10 μm serpentine) showed that, with the conditioning time extended from 60 s to 360 s, a large amount of Mg2+ on the mineral surface gradually dissolved into the pulp, resulting in a decrease of brucite recovery (from 83.83% to 76.79%), whereas the recovery of serpentine increased from 52.12% to 64.03%. Moreover, the SEM observation was applied to analyze the agglomeration behavior of brucite and serpentine, which clearly demonstrated the difference of adhesion behavior under various conditioning time. Finally, the total interaction energy that carried out by extended DLVO (E-DLVO) theory also supports the conclusion that the gravitational force between brucite and serpentine increases significantly with the increase of conditioning time.
-
-
References
-
[1] |
Yan-mei Yu, Wei-guo Liang, and Ji-shan Liu, Influence of solution concentration and temperature on the dissolution process and the internal structure of glauberite, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-018-1677-5
|
[2] |
Ying-bo Dong, Yue Liu, and Hai Lin, Leaching behavior of V, Pb, Cd, Cr, and As from stone coal waste rock with different particle sizes, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-018-1635-2
|
[3] |
Lu-hai Liao, Xiao-fei Zheng, Yong-lin Kang, Wei Liu, Yan Yan, and Zhi-ying Mo, Crystallographic texture and earing behavior analysis for different second cold reductions of double-reduction tinplate, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-018-1612-9
|
[4] |
Yun-long He, Rui-dong Xu, Shi-wei He, Han-sen Chen, Kuo Li, Yun Zhu, and Qing-feng Shen, Effect of NaNO3 concentration on anodic electrochemical behavior on the Sb surface in NaOH solution, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-018-1572-0
|
[5] |
Mostafa Amirjan and Mansour Bozorg, Properties and corrosion behavior of Al based nanocomposite foams produced by the sintering-dissolution process, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-018-1551-5
|
[6] |
Tapan Sarkar, Ajit Kumar Pramanick, Tapan Kumar Pal, and Akshay Kumar Pramanick, Development of a new coated electrode with low nickel content for welding ductile iron and its response to austempering, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-018-1660-1
|
[7] |
Ying-bo Dong, Hao Li, Hai Lin, and Yuan Zhang, Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1416-3
|
[8] |
Wei Liu, Qing-he Zhao, and Shuan-zhu Li, Relationship between the specific surface area of rust and the electrochemical behavior of rusted steel in a wet-dry acid corrosion environment, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1378-5
|
[9] |
Yong-zhong Zhang, Guo-hua Gu, Xiang-bin Wu, and Kai-le Zhao, Selective depression behavior of guar gum on talc-type scheelite flotation, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1470-x
|
[10] |
Xiao-bin Qiu, Jian-kang Wen, Song-tao Huang, Hong-ying Yang, Mei-lin Liu, and Biao Wu, New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment, Int. J. Miner. Metall. Mater.,
https://doi.org/10.1007/s12613-017-1501-7
|
-
-
Proportional views
-