Cite this article as:

Research Article

New insights into the properties of high manganese steel

+ Author Affiliations
  • Received: 5 June 2020Revised: 10 August 2020Accepted: 12 August 2020Available online: 14 August 2020
  • In the Collaborative Research Centre 761 "Steel ab initio - quantum mechanics guideddesign of new Fe based materials", scientists and engineers from RWTHAachen University and the Max Planck Institute for Iron Research have conductedresearch on mechanism-controlled material development with the particularexample of high manganese alloyed steels. From 2007 to 2019, a total of 55 partprojects and 4 transfer projects with industrial participation (some runninguntil 2021) have dealt with material and process design as well as materialcharacterization. The basic idea of the Collaborative Research Centre was todevelop a methodologically new approach for the design of structural materials. 

    This paper focuses on selected results with respect tothe mechanical properties of high manganese steels, the underlying physicalphenomena, and on specific characterization and modelling tools for this newclass of materials. It is worked out that these steels have a microstructurethat has to be characterized with modern methods on the nm-scale. Regarding theprocess routes, the generation of segregations must be taken into account.Finally, the mechanical properties show a characteristic temperature dependenceand contain peculiarities in the fracture behavior. The mechanical propertiesand especially the bake hardening are affected by short-range ordering phenomena.The strain hardening can be adjusted in a so far not possible scope which makethese steels attractive for demanding sheet steel applications.


  • 加载中
  •  

  • [1] Jian-ping Lai,Jia-xin Yu, and Jiong Wang, Effect of quenching-partitioning treatment on the microstructure, mechanical and abrasive properties of high carbon steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2164-3
    [2] Xing-hai Yang,Xiao-hua Chen,Shi-wei Pan,Zi-dong Wang,Kai-xuan Chen,Da-yong Li, and Jun-wei Qin, Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu-Nb addition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2159-0
    [3] Rong-jian Shi,Zi-dong Wang,Li-jie Qiao, and Xiao-lu Pang, Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2157-2
    [4] Yi-li Dai,Sheng-fu Yu,An-guo Huang, and Yu-sheng Shi, Microstructure and mechanical properties of high-strength low alloy steel by wire and arc additive manufacturing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1919-1
    [5] Arian Ghandi,Morteza Shamanian,Mohamad Reza Salmani, and Jalal Kangazian, A Pathway to Improve the Microstructural Features and Mechanical Properties of the DP590 Advanced High Strength Steel Welds, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2117-x
    [6] Fu-kai Zheng,Guan-nan Zhang,Xiu-juan Chen,Xiao Yang,Zeng-chao Yang,Yong Li, and Jiang-tao Li, A new method of preparing high-performance high-entropy alloys through high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2028-x
    [7] Di Wu,Wan-lin Wang,Li-gang Zhang,Zhen-yu Wang,Ke-chao Zhou, and Li-bin Liu, Erratum to: New high-strength Ti–Al–V–Mo alloy: from high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1940-4
    [8] Ya-feng Fu,Wan-zhong Yin,Chuan-yao Sun,Bin Yang,Jin Yao,Hong-liang Li,Chuang Li, and Hyunjung Kim, New insights into the flotation response of brucite and serpentine of different conditioning time: Surface dissolution behavior, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2158-1
    [9] Hao Wang, Yan-ping Bao, Ming Zhao, Min Wang, Xiao-ming Yuan, and  Shuai Gao, Effect of Ce on the cleanliness, microstructure and mechanical properties of high strength low alloy steel Q690E in industrial production process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1871-0
    [10] L. A. Santa-Cruz, G. Machado, A. A. Vicente, T. F. C. Hermenegildo, and  T. F. A. Santos, Effect of high anodic polarization on the passive layer properties of superduplex stainless steel friction stir welds at different chloride electrolyte pH values and temperatures, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1790-0
    [11] Di Wu, Wan-lin Wang, Li-gang Zhang, Zhen-yu Wang, Ke-chao Zhou, and  Li-bin Liu, New high-strength Ti-Al-V-Mo alloy: from high-throughput composition design to mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1854-1
    [12] Gang Niu, Yin-li Chen, Hui-bin Wu, Xuan Wang, and  Di Tang, Corrosion behavior of high-strength spring steel for high-speed railway, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1599-2
    [13] Yong-tao Zhang, Zhi-gang Dan, Ning Duan, and  Bao-ping Xin, Reductive recovery of manganese from low-grade manganese dioxide ore using toxic nitrocellulose acid wastewater as reductant, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1649-9
    [14] Seung-Woo Lee, Yong-Jae Kim, Jun-Hwan Bang, and  Soochun Chae, CaCO3 film synthesis from ladle furnace slag:morphological change, new material properties, and Ca extraction efficiency, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1699-z
    [15] M. K. El Fawkhry, Feasibility of new ladle-treated Hadfield steel for mining purposes, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1573-z
    [16] Masoud Sabzi, Sadegh Moeini Far, and  Saeid Mersagh Dezfuli, Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1697-1
    [17] Peng Jiang, Guo-xiang Yin, Ming-wei Yan, Jia-lin Sun, Bin Li, and  Yong Li, A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase:synthesis and physical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1412-7
    [18] Hui-ping Duan, Xiao Liu, Xian-zhe Ran, Jia Li, and  Dong Liu, Mechanical properties and microstructure of 3D-printed high Co-Ni secondary hardening steel fabricated by laser melting deposition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1492-4
    [19] Shao-chun Chen, Hong-xiang Ye, and  Xin-qiang Lin, Effect of rare earth and alloying elements on the thermal conductivity of austenitic medium manganese steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1449-7
    [20] Xiao-bin Qiu, Jian-kang Wen, Song-tao Huang, Hong-ying Yang, Mei-lin Liu, and  Biao Wu, New insights into the extraction of invisible gold in a low-grade high-sulfur Carlin-type gold concentrate by bio-pretreatment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1501-7
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(317) PDF downloads(8) Cited by()

Proportional views

New insights into the properties of high manganese steel

  • Corresponding author:

    Wolfgang Bleck

  • Steel Institute, RWTH Aachen University, Germany

Abstract: 

In the Collaborative Research Centre 761 "Steel ab initio - quantum mechanics guideddesign of new Fe based materials", scientists and engineers from RWTHAachen University and the Max Planck Institute for Iron Research have conductedresearch on mechanism-controlled material development with the particularexample of high manganese alloyed steels. From 2007 to 2019, a total of 55 partprojects and 4 transfer projects with industrial participation (some runninguntil 2021) have dealt with material and process design as well as materialcharacterization. The basic idea of the Collaborative Research Centre was todevelop a methodologically new approach for the design of structural materials. 

This paper focuses on selected results with respect tothe mechanical properties of high manganese steels, the underlying physicalphenomena, and on specific characterization and modelling tools for this newclass of materials. It is worked out that these steels have a microstructurethat has to be characterized with modern methods on the nm-scale. Regarding theprocess routes, the generation of segregations must be taken into account.Finally, the mechanical properties show a characteristic temperature dependenceand contain peculiarities in the fracture behavior. The mechanical propertiesand especially the bake hardening are affected by short-range ordering phenomena.The strain hardening can be adjusted in a so far not possible scope which makethese steels attractive for demanding sheet steel applications.


Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return