Cite this article as:

Research Article

Electrochemical preparation of Invar Fe-Ni36 alloy from mixed oxides precursor in molten carbonates

+ Author Affiliations
  • Received: 31 May 2020Revised: 14 August 2020Accepted: 17 August 2020Available online: 20 August 2020
  • Fe-Ni36 alloy was prepared by a one-step electrolysis of mixed oxides precursor in molten Na2CO3-K2CO3 eutectic melt at 750 °C, where a porous Fe2O3-NiO pellets served as cathode and a Ni10Cu11Fe alloy was an inert anode. During the electrolysis, NiO was preferentially electro-reduced to Ni, then Fe2O3 was reduced and simultaneously alloyed with nickel to form Fe-Ni36 alloy. Different cell voltages were applied to optimize the electrolytic conditions, and a relatively low energy consumption of 2.48 kW h/(kg-FeNi36) was achieved under 1.9 V with a high current efficiency of 94.6%. It was found that the particle size of the alloy was much smaller than that of the individual metal. This process provides a low-carbon technology for preparing Fe-Ni36 alloy by molten carbonates electrolysis.
  • 加载中
  •  

  • [1] Guan-nan Zhang,Xiao Yang,Zeng-chao Yang,Yong Li,Gang He, and Jiang-tao Li, Preparation of WC/CoCrFeNiAl0.2 high-entropy-alloy composites by high-gravity combustion synthesis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1892-8
    [2] Tai-qi Yin,Lang Chen,Yun Xue,Yang-hai Zheng,Xue-peng Wang,Yong-de Yan,Mi-lin Zhang,Guiling Wang,Fan Gao, and Min Qiu, Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu, and Zn) in a LiCl–KCl melt, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2112-2
    [3] Thongsuk Sichumsaeng,Nutthakritta Phromviyo, and Santi Maensiri, Influence of gas diffusion layer current collector on electrochemical performance of Ni(OH)2 nanostructures, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2174-1
    [4] Muntadher I. Rahmah,Raad S. Sabry, and Wisam J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composite with superhydrophobicity, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2096-y
    [5] Dong-yang Zhang,Xue Ma,Hong-wei Xie,Xiang Chen,Jia-kang Qu,Qiu-shi Song, and Hua-yi Yin, Electrochemical derusting in molten Na2CO3-K2CO3Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2068-2
    [6] Andries Mthisi,Nicholus Malatji,A. Patricia I. Popoola, and L. Rudolf Kanyane, Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2200-3
    [7] Dong Wang,Sheng Pang,Chun-yue Zhou,Yan Peng,Zhi Wang, and Xu-zhong Gong, Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2165-2
    [8] Yuan Li,Li-na Cheng,Wen-kang Miao,Chun-xiao Wang,De-zhi Kuang, and Shu-min Han, Nd–Mg–Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1880-z
    [9] Shi-yuan Liu,Yu-lan Zhen,Xiao-bo He,Li-jun Wang, and Kuo-chih Chou, Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2140-y
    [10] Jing-qun Yin,Zhi-qiang Zou, and Jun Tian, Preparation of crystalline rare earth carbonates with large particle size from the lixivium of weathered crust elution-deposited rare earth ores, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2066-4
    [11] Chen-teng Sun,Qian Xu,Yan-ping Xiao, and Yong-xiang Yang, Electrochemical deposition of Nd and Nd–Fe alloy from Cu6Nd alloy in NaCl–KCl–NdCl3 melt, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2130-0
    [12] Wan-liang Mi, Zhao-sen Liu, Toru Kimura, Atsunori Kamegawa, and  Hai-liang Wang, Crystal structure and hydrogen storage properties of (La,Ce)Ni5-xMx (M=Al, Fe, or Co) alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1714-z
    [13] Levent Kartal, Mehmet Barış Daryal, Güldem Kartal Şireli, and  Servet Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1867-9
    [14] Levent Kartal and  Servet Timur, Direct electrochemical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1821-x
    [15] Lun-wei Wang, Xue-ming Lü, Mei Liu, Zhi-xiong You, Xue-wei Lü, and  Chen-guang Bai, Preparation of ferronickel from nickel laterite via coal-based reduction followed by magnetic separation, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1622-7
    [16] Jie Fu, Heng-yan Zhao, Jie-run Wang, Yu Shen, and  Ming Liu, Preparation and electrochemical performance of double perovskite La2CoMnO6 nanofibers, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1644-1
    [17] Zhen-tao Dong, Yuan Li, Kai-liang Ren, Shu-qin Yang, Yu-meng Zhao, Yong-jie Yuan, Lu Zhang, and  Shu-min Han, Enhanced electrochemical properties of LaFeO3 with Ni modification for MH-Ni batteries, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1672-x
    [18] Berhe Goitom Gebreyohannes, Velázquez del Rosario Alberto, Abubeker Yimam, Girma Woldetinsae, and  Bogale Tadesse, Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite-spodumene ores, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1456-8
    [19] Yong-qiang Chen, Hong-liang Zhao, and  Cheng-yan Wang, Two-stage reduction for the preparation of ferronickel alloy from nickel laterite ore with low Co and high MgO contents, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1432-3
    [20] Dong-hua Tian, Zhen-chao Han, Ming-yong Wang, and  Shu-qiang Jiao, Direct electrochemical N-doping to carbon paper in Molten LiCl-KCl-Li3N, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2026-z
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(311) PDF downloads(6) Cited by()

Proportional views

Electrochemical preparation of Invar Fe-Ni36 alloy from mixed oxides precursor in molten carbonates

  • Corresponding author:

    Di-hua Wang    E-mail: wangdh@whu.edu.cn

  • School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China

Abstract: Fe-Ni36 alloy was prepared by a one-step electrolysis of mixed oxides precursor in molten Na2CO3-K2CO3 eutectic melt at 750 °C, where a porous Fe2O3-NiO pellets served as cathode and a Ni10Cu11Fe alloy was an inert anode. During the electrolysis, NiO was preferentially electro-reduced to Ni, then Fe2O3 was reduced and simultaneously alloyed with nickel to form Fe-Ni36 alloy. Different cell voltages were applied to optimize the electrolytic conditions, and a relatively low energy consumption of 2.48 kW h/(kg-FeNi36) was achieved under 1.9 V with a high current efficiency of 94.6%. It was found that the particle size of the alloy was much smaller than that of the individual metal. This process provides a low-carbon technology for preparing Fe-Ni36 alloy by molten carbonates electrolysis.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return