Fei Cao, Wei Wang, De-zhou Wei, and Wen-gang Liu, Separation of tungsten and molybdenum with solvent extraction using functionalized ionic liquid tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-020-2172-3
Cite this article as:
Fei Cao, Wei Wang, De-zhou Wei, and Wen-gang Liu, Separation of tungsten and molybdenum with solvent extraction using functionalized ionic liquid tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-020-2172-3
Research Article

Separation of tungsten and molybdenum with solvent extraction using functionalized ionic liquid tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate

+ Author Affiliations
  • Corresponding author:

    De-zhou Wei    E-mail: dzwei@mail.neu.edu.cn

  • Received: 23 May 2020Revised: 19 August 2020Accepted: 25 August 2020Available online: 27 August 2020
  • Functionalized ionic liquids (FILs) as extractants were employed for the separation of tungsten and molybdenum from a sulfate solution for the first time. The effects of initial pH, extractant concentration, metal concentrations in the feed were comprehensively investigated. The results showed that tricaprylmethylammonium bis(2,4,4-trimethylpentyl)phosphinate ([A336][Cyanex272]) could selectively extract W over Mo at an initial pH value of 5.5; the best separation factor βW/Mo of 25.61 was obtained for a solution with low metal concentrations (WO3: 2.49 g/L, Mo: 1.04 g/L). The [A336][Cyanex272] system performed effectively for solutions of different W/Mo molar ratios and different metal ion concentrations in the feed. The chemical reaction between [A336][Cyanex272] and W followed the ion association mechanism, which was further proved by the Fourier-transform infrared (FTIR) spectra of loaded [A336][Cyanex272] and the free extractant. The stripping experiments indicated that 95.48% W and 100.00% Mo were stripped using a 0.20 mol/L sodium hydroxide solution. Finally, the selective extractions of W and Mo from two synthetic solutions of different high metal concentrations were obtained; the separation factor βW/Mo reached 23.24 and 17.59 for the first and second solutions, respectively. The results suggest the feasibility of [A336][Cyanex272] as an extractant for the separation of tungsten and molybdenum.
  • loading
  • [1]
    X.S. Wu, G.Q. Zhang, L. Zeng, Q. Zhou, Z.H. Li, D. Zhang, Z.Y. Cao, W.J. Guan, Q.G. Li, and L.S. Xiao, Study on removal of molybdenum from ammonium tungstate solutions using solvent extraction with quaternary ammonium salt extractant, Hydrometallurgy, 186(2019), p. 218. doi: 10.1016/j.hydromet.2019.04.006
    J.T. Li and Z.W. Zhao, Kinetics of scheelite concentrate digestion with sulfuric acid in the presence of phosphoric acid, Hydrometallurgy, 163(2016), p. 55. doi: 10.1016/j.hydromet.2016.03.009
    Z.W. Zhao, C.F. Cao, and X.Y. Chen, Separation of macro amounts of tungsten and molybdenum by precipitation with ferrous salt, Trans. Nonferrous Met. Soc. China, 21(2011), No. 12, p. 2758. doi: 10.1016/S1003-6326(11)61120-5
    Z.W. Zhao and L.H. He, Enlightenment of geochemistry on separation of molybdenum and tungsten, Chin. J. Nonferrous Met., 24(2014), No. 6, p. 1637.
    W.J. Guan, G.Q. Zhang, and C.J. Gao, Solvent extraction separation of molybdenum and tungsten from ammonium solution by H2O2-complexation, Hydrometallurgy, 127-128(2012), p. 84. doi: 10.1016/j.hydromet.2012.07.008
    T.H. Nguyen and M.S. Lee, Separation of molybdenum(VI) and tungsten(VI) from sulfate solutions by solvent extraction with LIX 63 and PC 88A, Hydrometallurgy, 155(2015), p. 51. doi: 10.1016/j.hydromet.2015.04.014
    Z.W. Zhao, W.G. Zhang, X.Y. Chen, C.F. Cao, J.T. Li, and X.H. Liu, Study on removing Mo from tungstate solution using coprecipitation adsorption method based on novel Mo sulphidation process, Can. Metall. Q., 52(2013), No. 4, p. 358. doi: 10.1179/1879139513Y.0000000073
    X.Y. Lu, G.S. Huo, and C.H. Liao, Separation of macro amounts of tungsten and molybdenum by ion exchange with D309 resin, Trans. Nonferrous Met. Soc. China, 24(2014), No. 9, p. 3008. doi: 10.1016/S1003-6326(14)63438-5
    Z.W. Zhao, L.L. Gao, C.F. Cao, J.T. Li, X.Y. Chen, A.L. Chen, X.H. Liu, P.M. Sun, G.S. Huo, Y.J. Li, and H.G. Li, Separation of molybdenum from tungstate solution—scavenging thiomolybdate by copper compound, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1284. doi: 10.1007/s11663-012-9743-2
    Z.W. Zhao, X.Y. Xu, X.Y. Chen, G.S. Huo, A.L. Chen, X.H. Liu, and H. Xu, Thermodynamics and kinetics of adsorption of molybdenum blue with D301 ion exchange resin, Trans. Nonferrous Met. Soc. China, 22(2012), No. 3, p. 686. doi: 10.1016/S1003-6326(11)61232-6
    G.S. Huo, C. Peng, Q. Song, and X.Y. Lu, Tungsten removal from molybdate solutions using ion exchange, Hydrometallurgy, 147-148(2014), p. 217. doi: 10.1016/j.hydromet.2014.05.015
    P.C. Rout, G.K. Mishra, B. Padh, K.R. Suresh, and B. Ramachandra Reddy, Solvent extraction separation of molybdenum as thio-molybdate complex from alkaline tungsten leach liquor of spent HDS catalyst—A pilot study, Hydrometallurgy, 174(2017), p. 140. doi: 10.1016/j.hydromet.2017.10.002
    L.G. Chen and H. Bermudez, Solubility and aggregation of charged surfactants in ionic liquids, Langmuir, 28(2012), No. 2, p. 1157. doi: 10.1021/la2040399
    X.Q. Sun, Y. Ji, F.C. Hu, B. He, J. Chen, and D.Q. Li, The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction, Talanta, 81(2010), No. 4-5, p. 1877. doi: 10.1016/j.talanta.2010.03.041
    D. Kogelnig, A. Stojanovic, F. Jirsa, W. Körner, R. Krachler, and B.K. Keppler, Transport and separation of iron(III) from nickel(II) with the ionic liquid trihexyl(tetradecyl)phosphonium chloride, Sep. Purif. Technol., 72(2010), No. 1, p. 56. doi: 10.1016/j.seppur.2009.12.028
    W. Wang, H.L. Yang, H.M. Cui, D.L. Zhang, Y. Liu, and J. Chen, Application of bifunctional ionic liquid extractants [A336][CA-12] and [A336][CA-100] to the lanthanum extraction and separation from rare earths in the chloride medium, Ind. Eng. Chem. Res., 50(2011), No. 12, p. 7534. doi: 10.1021/ie2001633
    A. Rout and K. Binnemans, Solvent extraction of neodymium(III) by functionalized ionic liquid trioctylmethylammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent, Ind. Eng. Chem. Res., 53(2014), No. 15, p. 6500. doi: 10.1021/ie404340p
    D. Kogelnig, A. Stojanovic, M. Galanski, M. Groessl, F. Jirsa, R. Krachler, and B.K. Keppler, Greener synthesis of new ammonium ionic liquids and their potential as extracting agents, Tetrahedron Lett., 49(2008), No. 17, p. 2782. doi: 10.1016/j.tetlet.2008.02.138
    L. Guo, J. Chen, L. Shen, J.P. Zhang, D.L. Zhang, and Y.F. Deng, Highly selective extraction and separation of rare earths(III) using bifunctional ionic liquid extractant, ACS Sustainable Chem. Eng., 2(2014), No. 8, p. 1968. doi: 10.1021/sc400541b
    J.P. Mikkola, P. Virtanen, and R. Sjöholm, Aliquat 336®—a versatile and affordable cation source for an entirely new family of hydrophobic ionic liquids, Green Chem., 8(2006), No. 3, art. No. 250. doi: 10.1039/b512819f
    C. Xiao, L. Zeng, L.S. Xiao, and G.Q. Zhang, Solvent extraction of molybdenum (VI) from hydrochloric acid leach solutions using P507. part I: Extraction and mechanism, Solvent Extr. Ion Exch., 35(2017), No. 2, p. 130. doi: 10.1080/07366299.2017.1308154
    Q. Sun, W. Wang, L.M. Yang, S.T. Huang, Z. Xu, Z.G. Ji, Y. Li, and Y.H.N. Hu, Separation and recovery of heavy metals from concentrated smelting wastewater by synergistic solvent extraction using a mixture of 2-hydroxy-5-nonylacetophenone oxime and bis(2, 4, 4-trimethylpentyl) -phosphinic acid, Solvent Extr. Ion Exch., 36(2018), No. 2, p. 175. doi: 10.1080/07366299.2018.1446680
    Z.T. Ichlas and D.C. Ibana, Process development for the direct solvent extraction of nickel and cobalt from nitrate solution: Aluminum, cobalt, and nickel separation using Cyanex 272, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 37. doi: 10.1007/s12613-017-1376-7
    X.Q. Sun, Y. Ji, Y. Liu, J. Chen, and D.Q. Li, An engineering-purpose preparation strategy for ammonium-type ionic liquid with high purity, AIChE J., 56(2009), No. 4, p. 989.
    J.L. Zhang, Z.W. Zhao, X.Y. Chen, and X.H. Liu, Thermodynamic analysis for separation of tungsten and molybdenum in W–Mo–H2O system, Chin. J. Nonferrous Met., 23(2013), No. 5, p. 1463.
    C. Xiao, L.S. Xiao, Z.Y. Cao, and L. Zeng, Study on removal of tungsten from molybdate solutions, Can. Metall. Q., 54(2015), No. 4, p. 490. doi: 10.1179/1879139515Y.0000000015
    P. Nekovář and D. Schrötterová, Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT, Chem. Eng. J., 79(2000), No. 3, p. 229. doi: 10.1016/S1385-8947(00)00207-2
    X.Q. Sun, Y. Ji, L.N. Zhang, J. Chen, and D.Q. Li, Separation of cobalt and nickel using inner synergistic extraction from bifunctional ionic liquid extractant (Bif-ILE), J. Hazard. Mater., 182(2010), No. 1-3, p. 447. doi: 10.1016/j.jhazmat.2010.06.052
    Z.H. Li, G.Q. Zhang, W.J. Guan, L. Zeng, L.S. Xiao, Q.G. Li, Z.Y. Cao, and X.Y. Lu, Separation of tungsten from molybdate using solvent extraction with primary amine N1923, Hydrometallurgy, 175(2018), p. 203. doi: 10.1016/j.hydromet.2017.10.018
    A. Davantès, D. Costa, and G Lefèvre, Infrared study of (poly)tungstate ions in solution and sorbed into layered double hydroxides: Vibrational calculations and in situ analysis, J. Phys. Chem. C, 119(2015), No. 22, p. 12356. doi: 10.1021/acs.jpcc.5b01578
    Y.H. Cao, H.J. Wang, H.Z. Liu, and Z.G. Gao, A new process for molybdenum-tungsten extraction from high pressure leaching solution of crude molybdenum–tungsten oxide concentrate, Rare Met. Cem. Carbides, 41(2013), No. 1, p. 17.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(7)

    Share Article

    Article Metrics

    Article views (1478) PDF downloads(15) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint