Thongsuk Sichumsaeng, Nutthakritta Phromviyo, and Santi Maensiri, Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)2 nanostructures, Int. J. Miner. Metall. Mater.
Cite this article as:
Thongsuk Sichumsaeng, Nutthakritta Phromviyo, and Santi Maensiri, Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)2 nanostructures, Int. J. Miner. Metall. Mater.
Research Article

Influence of gas-diffusion-layer current collector on electrochemical performance of Ni(OH)2 nanostructures

+ Author Affiliations
  • Corresponding author:

    Santi Maensiri    E-mail:

  • Received: 13 April 2020Revised: 22 August 2020Accepted: 25 August 2020Available online: 27 August 2020
  • We report the electrochemical performance of Ni(OH)2 on a gas diffusion layer (GDL). The Ni(OH)2 working electrode was successfully prepared via a simple method, and its electrochemical performance in 1 M NaOH electrolyte was investigated. The electrochemical results showed that the Ni(OH)2/GDL provided the maximum specific capacitance value (418.11 F·g−1) at 1 A·g−1. Furthermore, the Ni(OH)2 electrode delivered a high specific energy of 17.25 Wh·kg−1 at a specific power of 272.5 W·kg−1 and retained about 81% of the capacitance after 1000 cycles of galvanostatic charge–discharge (GCD) measurements. The results of scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed the occurrence of sodium deposition after long-time cycling, which caused the reduction in the specific capacitance. This study results suggest that the light-weight GDL, which can help overcome the problem of the oxide layer on metal–foam substrates, is a promising current collector to be used with Ni-based electroactive materials for energy storage applications.
  • loading
  • [1]
    P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7(2008), No. 11, p. 845. doi: 10.1038/nmat2297
    Y.L. Huang, Y.Y. Li, Q.M. Gong, G.L. Zhao, P.J. Zheng, J.F. Bai, J.N. Gan, M. Zhao, Y. Shao, D.Z. Wang, L. Liu, G.S. Zou, D.M. Zhuang, J. Liang, H.W. Zhu, and C.W. Nan, Hierarchically mesostructured aluminum current collector for enhancing the performance of supercapacitors, ACS Appl. Mater. Interfaces, 10(2018), No. 19, p. 16572. doi: 10.1021/acsami.8b03647
    H.X. Wang, W. Zhang, N.E. Drewett, H.B. Zhang, K.K. Huang, S.H. Feng, X.L. Li, J Kim, S. Yoo, T. Deng, S.J. Liu, D. Wang, and W.T. Zheng, Unifying miscellaneous performance criteria for a prototype supercapacitor via Co(OH)2 active material and current collector interactions, J. Microsc., 267(2017), No. 1, p. 34. doi: 10.1111/jmi.12545
    H.X. Wang, D. Wang, T. Deng, X.Y. Zhang, C. Zhang, T.T. Qin, D.Y. Cheng, Q. Zhao, Y.N. Xie, L.D. Shao, H.B. Zhang, W. Zhang, and W.T. Zheng, Insight into graphene/hydroxide compositing mechanism for remarkably enhanced capacity, J. Power Sources, 399(2018), p. 238. doi: 10.1016/j.jpowsour.2018.07.104
    M. Grdeń, M. Alsabet, and G. Jerkiewicz, Surface science and electrochemical analysis of nickel foams, ACS Appl. Mater. Interfaces, 4(2012), No. 6, p. 3012. doi: 10.1021/am300380m
    N.K. Chaudhari, H. Jin, B. Kim, and K. Lee, Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting, Nanoscale, 9(2017), No. 34, p. 12231. doi: 10.1039/C7NR04187J
    W. Xing, S.Z. Qiao, X.Z. Wu, X.L. Gao, J. Zhou, S.P. Zhuo, S.B. Hartono, and D. Hulicova-Jurcakova, Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement, J. Power Sources, 196(2011), No. 8, p. 4123. doi: 10.1016/j.jpowsour.2010.12.003
    Y. Gao, G.Q. Sun, S.L. Wang, and S. Zhu, Carbon nanotubes based gas diffusion layers in direct methanol fuel cells, Energy, 35(2010), No. 3, p. 1455. doi: 10.1016/
    V. Gurau, M.J. Bluemle, E.S.D. Castro, Y.M. Tsou, J.A. Mann, and T.A. Zawodzinski, Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 1. Wettability (internal contact angle to water and surface energy of GDL fibers), J. Power Sources, 160(2006), No. 2, p. 1156. doi: 10.1016/j.jpowsour.2006.03.016
    C.J. Bapat and S.T. Thynell, Effect of anisotropic thermal conductivity of the GDL and current collector rib width on two-phase transport in a PEM fuel cell, J. Power Sources, 179(2008), No. 1, p. 240. doi: 10.1016/j.jpowsour.2007.12.033
    C. Lim and C.Y. Wang, Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell, Electrochim. Acta, 49(2004), No. 24, p. 4149. doi: 10.1016/j.electacta.2004.04.009
    C. Arbizzani, S. Beninati, M. Lazzari, and M. Mastragostino, Carbon paper as three-dimensional conducting substrate for tin anodes in lithium-ion batteries, J. Power Sources, 141(2005), No. 1, p. 149. doi: 10.1016/j.jpowsour.2004.09.013
    A. El-kharouf, T.J. Mason, D.J.L. Brett, and B.G. Pollet, Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells, J. Power Sources, 218(2012), p. 393. doi: 10.1016/j.jpowsour.2012.06.099
    L.Y. Zhang and H. Gong, A cheap and non-destructive approach to increase coverage/loading of hydrophilic hydroxide on hydrophobic carbon for lightweight and high-performance supercapacitors, Sci. Rep., 5(2016), art. No. 18108. doi: 10.1038/srep18108
    U. Singh, A. Banerjee, D. Mhamane, A. Suryawanshi, K.K. Upadhyay, and S. Ogale, Surfactant free gram scale synthesis of mesoporous Ni(OH)2–r-GO nanocomposite for high rate pseudocapacitor application, RSC Adv., 4(2014), No. 75, p. 39875. doi: 10.1039/C4RA06601D
    Z.Y. Lu, Z. Chang, W. Zhu, and X.M. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance, Chem. Commun., 47(2011), No. 34, p. 9651. doi: 10.1039/c1cc13796d
    T. Sichumsaeng, N. Chanlek, and S. Maensiri, Effect of various electrolytes on the electrochemical properties of Ni(OH)2 nanostructures, Appl. Surf. Sci., 446(2018), p. 177. doi: 10.1016/j.apsusc.2018.01.276
    Y. Liu, J.Y. Zhou, L.L. Chen, P. Zhang, W.B. Fu, H. Zhao, Y.F. Ma, X.J. Pan, Z.X. Zhang, W.H. Han, and E.Q. Xie, Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors, ACS Appl. Mater. Interfaces, 7(2015), No. 42, p. 23515. doi: 10.1021/acsami.5b06107
    Y.W. Jiang, J.W. Chen, J. Zhang, Y.P. Zeng, Y.C. Wang, F.L. Zhou, M. Kiani, and R.L. Wang, Controlled decoration of Pd on Ni(OH)2 nanoparticles by atomic layer deposition for high ethanol oxidation activity, Appl. Surf. Sci., 420(2017), p. 214. doi: 10.1016/j.apsusc.2017.05.132
    Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, and Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon, Carbon, 45(2007), No. 8, p. 1686. doi: 10.1016/j.carbon.2007.03.038
    G.X. Hu, C.X. Li, and H. Gong, Capacitance decay of nanoporous nickel hydroxide, J. Power Sources, 195(2010), No. 19, p. 6977. doi: 10.1016/j.jpowsour.2010.03.093
    K.A. Owusu, L.B. Qu, J.T. Li, Z.Y. Wang, K.N. Zhao, C. Yang, K.M. Hercule, C. Lin, C.W. Shi, Q.L. Wei, L. Zhou, and L.Q. Mai, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors, Nat. Commun., 8(2017), art. No. 14264. doi: 10.1038/ncomms14264
    H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, and S.E. Lindquist, Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous, J. Phys. Chem. B, 101(1997), No. 39, p. 7717. doi: 10.1021/jp970490q
    M. Forghani and S.W. Donne, Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior, J. Electrochem. Soc., 165(2018), No. 3, p. A664. doi: 10.1149/2.0931803jes
    K.V. Sankar, S. Surendran, K. Pandi, A.M. Allin, V.D. Nithya, Y.S. Lee, and R.K. Selvan, Studies on the electrochemical intercalation/de-intercalation mechanism of NiMn2O4 for high stable pseudocapacitor electrodes, RSC Adv., 5(2015), No. 35, p. 27649. doi: 10.1039/C5RA00407A
    V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7(2014), No. 5, p. 1597. doi: 10.1039/c3ee44164d
    D.W. Du, R. Lan, K. Xie, H.L. Wang, and S.W. Tao, Synthesis of Li2Ni2(MoO4)3 as a high-performance positive electrode for asymmetric supercapacitors, RSC Adv., 7(2017), No. 22, p. 13304. doi: 10.1039/C6RA28580E
    S. Ardizzone, G. Fregonara, and S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes, Electrochim, Electrochim. Acta, 35(1990), No. 1, p. 263. doi: 10.1016/0013-4686(90)85068-X
    B. Senthilkumar, K.V. Sankar, L. Vasylechko, Y.S. Lee, and R.K. Selvan, Synthesis and electrochemical performances of maricite–NaMPO4 (M = Ni, Co, Mn) electrodes for hybrid supercapacitors, RSC Adv., 4(2014), No. 95, p. 53192. doi: 10.1039/C4RA06050D
    D.D. Zhao, S.J. Bao, W.J. Zhou, and H.L. Li, Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor, Electrochem. Commun., 9(2007), No. 5, p. 869. doi: 10.1016/j.elecom.2006.11.030
    U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, and O.S. Joo, Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application, J. Power Sources, 188(2009), No. 1, p. 338. doi: 10.1016/j.jpowsour.2008.11.136
    Q.H. Huang, X.Y. Wang, J. Li, C.L. Dai, S. Gamboa, and P.J. Sebastian, Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors, J. Power Sources, 164(2007), No. 1, p. 425. doi: 10.1016/j.jpowsour.2006.09.066
    S.H. Kazemi and K. Malae, Electrodeposited Ni(OH)2 nanostructures on electro-etched carbon fiber paper for highly stable supercapacitors, J. Iran. Chem. Soc., 14(2017), No. 2, p. 419. doi: 10.1007/s13738-016-0990-z
    N.A. Alhebshi, R.B. Rakhi, and H.N. Alshareef, Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes, J. Mater. Chem. A, 1(2013), No. 47, p. 14897. doi: 10.1039/c3ta12936e
    F.N. Pardo, D. Benetti, H.G. Zhao, V.M. Castaño, A. Vomiero, and F. Rosei, Platinum/palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer, J. Power Sources, 335(2016), p. 138. doi: 10.1016/j.jpowsour.2016.10.011
    J.S. Meráz, F. Fernández, and L.F. Magaña, A method for the measurement of the resistance of electrolytic solutions, J. Electrochem. Soc., 152(2005), No. 4, p. E135. doi: 10.1149/1.1867612
    Q. Wang, J.E. Moser, and M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, J. Phys. Chem. B, 109(2005), No. 31, p. 14945. doi: 10.1021/jp052768h
    J. Wang, Z. Gao, Z.S. Li, B. Wang, Y.X. Yan, Q. Liu, T. Mann, M.L. Zhang, and Z.H. Jiang, Green synthesis of graphene nanosheets/ZnO composites and electrochemical properties, J. Solid State Chem., 184(2011), No. 6, p. 1421. doi: 10.1016/j.jssc.2011.03.006
    T. Li, U. Gulzar, X. Bai, M. Lenocini, M. Prato, K.E. Aifantis, C. Capiglia, and R.P. Zaccaria, Insight on the failure mechanism of Sn electrodes for sodium-ion batteries: Evidence of pore formation during sodiation and crack formation during desodiation, ACS Appl. Energy Mater., 2(2019), No. 1, p. 860. doi: 10.1021/acsaem.8b01934
    S.J. He, X.W. Hu, S.L. Chen, H. Hu, M. Hanif, and H.Q. Hou, Needle-like polyaniline nanowires on graphite nanofibers: Hierarchical micro/nano-architecture for high performance supercapacitors, J. Mater. Chem., 22(2012), No. 11, p. 5114. doi: 10.1039/c2jm15668g
    S.M. Kim, C.Y. Ahn, Y.H. Cho, S. Kim, W. Hwang, S. Jang, S. Shin, G. Lee, Y.E. Sung, and M. Choi, High-performance fuel cell with stretched catalyst-coated membrane: One-step formation of cracked electrode, Sci. Rep., 6(2016), art. No. 26503. doi: 10.1038/srep26503
    A. Ghosh, S. Ghosh, G.M. Seshadhri, and S. Ramaprabhu, Green synthesis of nitrogen- doped self-assembled porous carbon–metal oxide composite towards energy and environmental applications, Sci. Rep., 9(2019), art. No. 5187. doi: 10.1038/s41598-019-41700-5
    G.G. Zhang, L. Wang, Y. Liu, W.F. Li, F. Yu, W. Lu, and H.T. Huang, Cracks bring robustness: A pre-cracked NiO nanosponge electrode with greatly enhanced cycle stability and rate performance, J. Mater. Chem. A, 4(2016), No. 21, p. 8211. doi: 10.1039/C6TA02568D
    Y. Yui, M. Hayashi, and J. Nakamura, In situ microscopic observation of sodium deposition/dissolution on sodium electrode, Sci. Rep., 6(2016), art. No. 22406. doi: 10.1038/srep22406
    M.Q. Zhu, S.M. Li, B. Li, Y.J. Gong, Z.G. Du, and S.B. Yang, Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes, Sci. Adv., 5(2019), No. 4, art. No. eaau6264. doi: 10.1126/sciadv.aau6264
    B. Sun, C. Pompe, S. Dongmo, J.Q. Zhang, K. Kretschmer, D. Schröder, J. Janek, and G.X. Wang, Challenges for developing rechargeable room-temperature sodium oxygen batteries, Adv. Mater. Technol., 3(2018), No. 9, art. No. 1800110. doi: 10.1002/admt.201800110
    W.X. Mei, H.D. Chen, J.H. Sun, and Q.S. Wang, The effect of electrode design parameters on battery performance and optimization of electrode thickness based on the electrochemical–thermal coupling model, Sustainable Energy Fuels, 3(2019), No. 1, p. 148. doi: 10.1039/C8SE00503F
    R. Kötz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 45(2000), No. 15-16, p. 2483. doi: 10.1016/S0013-4686(00)00354-6
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Share Article

    Article Metrics

    Article views (1155) PDF downloads(16) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint