Xiao-li Xi, Ming Feng, Li-wen Zhang,  and Zuo-ren Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1599-1617. https://doi.org/10.1007/s12613-020-2175-0
Cite this article as:
Xiao-li Xi, Ming Feng, Li-wen Zhang,  and Zuo-ren Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, pp. 1599-1617. https://doi.org/10.1007/s12613-020-2175-0
Invited review

Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery

+ Author Affiliations
  • Corresponding author:

    Xiao-li Xi    E-mail: xixiaoli@bjut.edu.cn

  • Received: 20 May 2020Revised: 23 August 2020Accepted: 24 August 2020Available online: 27 August 2020
  • Molten salt is an excellent medium for chemical reaction, energy transfer, and storage. Molten salt innovative technologies should be developed to recover metals from secondary resources and reserve metals from primary natural sources. Among these technologies, molten salt electrolysis is an economic and environment-friendly method to extract metals from waste materials. From the perspective of molten salt characteristics, the application of molten salts in chemistry, electrochemistry, energy, and thermal storage should be comprehensively elaborated. This review discusses further directions for the research and development of molten salt electrolysis and their use for metal recovery from various metal wastes, such as magnet scrap, nuclear waste, and cemented carbide scrap. Attention is placed on the development of various electrolysis methods for different metal containing wastes, overcoming some problems in electrolytes, electrodes, and electrolytic cells. Special focus is given to future development directions for current associated processing obstacles.

  • loading
  • [1]
    D.R. Sadoway, New opportunities for metals extraction and waste treatment by electrochemical processing in molten salts, J. Mater. Res., 10(1995), No. 3, p. 487. doi: 10.1557/JMR.1995.0487
    [2]
    S.Q, Jiao, H.D. Jiao, WL. Song, M.Y. Wang, and J.G. Tu, A review on liquid metals as cathodes for molten salt/oxide electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1588. doi: 10.1007/s12613-020-1971-x
    [3]
    S.Y. Liu, Y.L. Zhen, X.B. He, L.J. Wang, and K.C. Chou, Recovery and separation of Fe and Mn from simulated chlorinated vanadium slag by molten salt electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1678. doi: 10.1007/s12613-020-2140-y
    [4]
    L. Kartal, M.B. Daryal, G.K. Şireli, and S. Timur, One-step electrochemical reduction of stibnite concentrate in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1258. doi: 10.1007/s12613-019-1867-9
    [5]
    Y.K. Wu, S. Chen, and L.J. Wang, Electrochemistry of Hf (IV) in NaCl–KCl–NaF–K2HfF6 molten salts, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1644. doi: 10.1007/s12613-020-2083-3
    [6]
    V.M.B. Nunes, C.S. Queirós, M.J.V. Lourenço, F.J.V. Santos, and C.A. Nieto, Molten salts as engineering fluids-A review: Part I. Molten alkali nitrates, Appl. Energ., 183(2016), p. 603. doi: 10.1016/j.apenergy.2016.09.003
    [7]
    R. Serrano-López, J. Fradera, and S. Cuesta-López, Molten salts database for energy applications, Chem. Eng. Process., 73(2013), p. 87. doi: 10.1016/j.cep.2013.07.008
    [8]
    B. Muñoz-Sánchez, J. Nieto-Maestre, I. Iparraguirre-Torres, A. García-Romero, and J.M. Sala-Lizarraga, Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures. An overview of the literature, Renewable Sustainable Energy Rev., 82(2018), p. 3924. doi: 10.1016/j.rser.2017.10.080
    [9]
    P. Liu, Y.X. Tong, and Q.Q. Yang, Molten salt systems and the new developments for the application of molten salts, Electrochemistry, 134(2007), No. 4, p. 351.
    [10]
    M. Patrick and A.G. Ronald, Thermal activated (thermal) battery technology: Part Ⅱ. Molten salt electrolytes, J. Power Sources, 164(2007), No. 1, p. 397. doi: 10.1016/j.jpowsour.2006.10.080
    [11]
    M. Liu, N.H. Steven, B. Stuart, M. Belusko, R. Jacob, G. Will, W. Saman, and F. Bruno, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renewable Sustainable Energy Rev., 53(2016), p. 1411. doi: 10.1016/j.rser.2015.09.026
    [12]
    K. Habib, S.T. Hansdóttir, and H. Habib, Critical metals for electromobility: Global demand scenarios for passenger vehicles, 2015-2050, Resour. Conserv. Recycl., 154(2020), art. No. 104603. doi: 10.1016/j.resconrec.2019.104603
    [13]
    S.E. Zhang, Y.J. Ding, B. Liu, and C.C. Chang, Supply and demand of some critical metals and present status of their recycling in WEEE, Waste Manage., 65(2017), p. 113. doi: 10.1016/j.wasman.2017.04.003
    [14]
    S. Langkau, E. Tercero, and A. Luis, Technological change and metal demand over time: What can we learn from the past, Sustainable Mater. Technol., 16(2018), p. 54. doi: 10.1016/j.susmat.2018.02.001
    [15]
    Z.S. Yu, H.W. Han, P.Y. Feng, S. Zhao, T.Y. Zhou, A. Kakade, S. Kulshrestha, S. Majeed, and X.K. Li, Recent advances in the recovery of metals from waste through biological processes, Bioresour. Technol., 297(2020), art. No. 122416. doi: 10.1016/j.biortech.2019.122416
    [16]
    T. Hennebel, N. Boon, S. Maes, and M. Lenz, Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives, New Biotechnol., 32(2015), No. 1, p. 121. doi: 10.1016/j.nbt.2013.08.004
    [17]
    S.W. Won, P. Kotte, W. Wei, A. Lim, and Y.S. Yun, Biosorbents for recovery of precious metals, Bioresour. Technol., 160(2014), p. 203. doi: 10.1016/j.biortech.2014.01.121
    [18]
    J.P.H. Perez, K. Folens, K. Leus, F. Vanhaecke, P. Van Der Voort, and L. Du, Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams, Resour. Conserv. Recycl., 142(2019), p. 177. doi: 10.1016/j.resconrec.2018.11.029
    [19]
    D.P. Song and J.Q. Xu, Recycling technologies and present legislations of management for waste electrical and electronic equipment, J. Shanghai Sec. Polytech. Univ., 25(2008), No. 2, p. 129.
    [20]
    W.J. Hall and P.T. Williams, Separation and recovery of materials from scarp printed circuit boards, Resour. Conserv. Recycl., 51(2007), No. 3, p. 691. doi: 10.1016/j.resconrec.2006.11.010
    [21]
    Y.J. Ding, S.E. Zhang, B. Liu, H.D. Zheng, C.C. Chang, and C. Ekbergc, Recovery of precious metals from electronic waste and spent catalysts: A review, Resour. Conserv. Recycl., 141(2019), p. 284. doi: 10.1016/j.resconrec.2018.10.041
    [22]
    L. Kartal and S. Timur, Direct electrochemical reduction of copper sulfide in molten borax, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 992. doi: 10.1007/s12613-019-1821-x
    [23]
    J. Mohanty and P.K. Behera, Use of pre-treated TiO2 as cathode material to produce Ti metal through molten salt electrolysis, Trans. Indian Inst. Met., 72(2019), No. 4, p. 859. doi: 10.1007/s12666-018-1544-0
    [24]
    S. Masoudifar, M. Bavand-Vandchali, F. Golestani-Fard, and A. Nemati, Molten salt synthesis of a SiC coating on graphite flakes for application in refractory castables, Ceram. Int., 42(2016), No. 10, p. 11951. doi: 10.1016/j.ceramint.2016.04.120
    [25]
    J. Zhang, W. Li, Q.L. Jia, L.X. Lin, J.T. Huang, and A.W. Zhang, Molten salt assisted synthesis of 3C–SiC nanowire and its photoluminescence properties, Ceram. Int., 41(2015), No. 10, p. 12614. doi: 10.1016/j.ceramint.2015.06.089
    [26]
    Z. Huang, F.L. Li, C.P. Jiao, J.H. Liu, J.T. Huang, L.L. Lu, H.J. Zhang, and S.W. Zhang, Molten salt synthesis of La2Zr2O7 ultrafine powders, Ceram. Int., 42(2016), No. 5, p. 6221. doi: 10.1016/j.ceramint.2016.01.004
    [27]
    R.H. Arendt, Liquid-phase sintering of magnetically isotropic and anise by the reaction of BaFe2O4 with Fe2O3, J. Appl. Phys., 44(1973), No. 7, p. 3300. doi: 10.1063/1.1662750
    [28]
    Y.M. Li, D. Huang, R.H. Liao, and J.S. Wang, Development of crystal synthesis by molten salt method, J. Ceram., 2(2008), p. 87.
    [29]
    Q.Q. Yang, Application of molten salt technology, Univ. Chem., 3(1994), p. 1.
    [30]
    A. Potysz, E.D. van Hullebusch, and J. Kierczak, Perspectives regarding the use of metallurgical slags as secondary metal resources - A review of bioleaching approaches, J. Environ. Manage., 219(2018), p. 138. doi: 10.1016/j.jenvman.2018.04.083
    [31]
    K. Pollmann, S. Kutschke, S. Matys, J. Raff, G. Hlawacek, and F.L. Lederer, Bio-recycling of metals: Recycling of technical products using biological applications, Biotechnol. Adv., 36(2018), No. 4, p. 1048. doi: 10.1016/j.biotechadv.2018.03.006
    [32]
    X.Y. Yan and D.J. Fray, Molten salt electrolysis for sustainable metals extraction and materials processing: A review, [in] Shing Kuai and Ji Meng, eds., Electrolysis: Theory, Types and Applications, Nova Science, 2010, p. 255.
    [33]
    T. Guo, S.D. Wang, X.S. Ye, Q. Li, H.N. Liu, M. Guo, and Z.J. Wu, Research progress in the preparation of rare earth alloys by molten salt electrolysis method, Sci. Sin. Chim., 42(2012), No. 9, p. 1328. doi: 10.1360/032012-252
    [34]
    J.M. Liu, X.G. Lu, Q. Li, C.T. Chen, H.W. Chen, X.Y. Lü, and G.Z. Zhou, Prospect and retrospect of fused salt electrolysis process for producing refractory metals, Rare Met. Lett., 9(2006), p. 5.
    [35]
    G.Q. Zong and J.C. Xiao, Advances in the preparation and application of fluoride molten salts, Chem. Ind. Eng. Prog., 37(2018), No. 7, p. 6.
    [36]
    R. Liu, S.X. Hui, W.J. Ye, Y. Yu, Y.Y. Fu, and X.J. Song, X.G. Deng, Tensile and fracture properties of Ti–62A alloy plate with different microstructures, Rare Met., 31(2012), No. 5, p. 420. doi: 10.1007/s12598-012-0531-6
    [37]
    Z. Wang, J. Li, Y.X. Hua, Z. Zhang, Y. Zhang, and P.C. Ke, Research progress in production technology of titanium, Chin. J. Rare Met., 38(2014), No. 5, p. 915.
    [38]
    M.V. Ginatta, Why produce titanium by EW, JOM., 52(2000), No. 5, p. 18. doi: 10.1007/s11837-000-0025-0
    [39]
    M.V. Ginatta, Process for the Electrolytic Production of Metals, US Patent, Appl. US6074545(A), 2000.
    [40]
    M.V. Ginatta, G. Orsello, and R. Berruti, Method and Cell for the Electrolytic Production of a Polyvalent Metal, US Patent, Appl. US5015342(A), 1991.
    [41]
    G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361. doi: 10.1038/35030069
    [42]
    M.F. Liu, S.G Lu, and S.R. Kan, Recent development of electrochemical reduction of oxides to refractory metals and alloys in molten salt, Chin. J. Rare Met., 32(2008), No. 5, p. 130.
    [43]
    B.J. Zhao, G.H. Cui, and L. Wang, Development of the production of metal and alloy by direct electrochemical removal of oxygen, J. Hebei Polytech. Univ., 30(2008), No. 1, p. 128.
    [44]
    Z.L. Yu, N. Wang, S. Fang, X.P. Qi, Z.F. Gao, J.Y. Yang, and S.G. Lu, Pilot-plant production of high-performance silicon nanowires by molten salt electrolysis of silica, Ind. Eng. Chem. Res., 59(2020), No. 1, p. 1. doi: 10.1021/acs.iecr.9b04430
    [45]
    E. Juzeliūnas and D.J. Fray, Silicon electrochemistry in molten salts, Chem. Rev., 120(2020), No. 3, p. 1690. doi: 10.1021/acs.chemrev.9b00428
    [46]
    B.P. Uday, D.E. Woolley, and G.B. Kenney, Emerging SOM technology for the green synthesis of metals from oxides, JOM, 53(2001), No. 10, p. 32. doi: 10.1007/s11837-001-0053-4
    [47]
    X.G. Lu, X.L. Zou, C.H. Li, Q.D. Zhong, W.Z. Ding, and Z.F. Zhou, Green electrochemical process solid-oxide oxygen-ionconducting membrane (SOM): Direct extraction of Ti–Fe alloys from natural ilmenite, Metall. Mater. Trans. B, 43(2012), No. 3, p. 503. doi: 10.1007/s11663-012-9633-7
    [48]
    X.S. Ye, X.G. Lu, C.H. Li, W.Z. Ding, X.L. Zou, Y.H. Gao, and Q.D. Zhong, Preparation of Ti–Fe based hydrogen storage alloy by SOM method, Int. J. Hydrogen Energy, 36(2011), No. 7, p. 4573. doi: 10.1016/j.ijhydene.2010.04.098
    [49]
    F. Cardarelli, Method for Electrowinning of Titanium Metal or Alloy from Titanium Oxide Containing Compound in the Liquid State, US Patent, Appl. US7504017(B2), 2009.
    [50]
    F. Li, M. Yu, and X.F. Cui, Advances on low cost molten-salt electrolysis technology for Titanium production, Nonferrous Metal., 62(2010), No. 3, p. 96.
    [51]
    S.Q. Jiao and H.M. Zhu, Novel metallurgical process for titanium production, J. Mater. Res., 21(2006), No. 9, p. 2172. doi: 10.1557/jmr.2006.0268
    [52]
    S.Q. Jiao and H.M. Zhu, Electrolysis of Ti2CO solid solution prepared by TiC and TiO2, J. Alloys Compd., 438(2007), No. 1, p. 243.
    [53]
    R.A. Guidotti and P. Masset, Thermally activated (“thermal”) battery technology Part I: An overview, J. Power Sources, 161(2006), No. 2, p. 1443. doi: 10.1016/j.jpowsour.2006.06.013
    [54]
    M.G. Jeong, J.H. Cho, and B.J. Lee, Heat transfer analysis of a high-power and large-capacity thermal battery and investigation of effective thermal model, J. Power Sources, 424(2019), p. 35. doi: 10.1016/j.jpowsour.2019.03.067
    [55]
    R.A. Guidotti, F.W. Reinhardt, and J.G. Odinek, Overview of high-temperature batteries for geothermal and oil/gas borehole power sources, J. Power Sources, 136(2004), No. 2, p. 257. doi: 10.1016/j.jpowsour.2004.03.007
    [56]
    M.H. Miles, G.E. McManis, and A.N. Fletcher, Effect of temperature and electrolyte composition on the lithium-boron alloy anode in nitrate melts: Passivating films on solid and liquid lithium, Electrochim. Acta, 30(1985), No. 7, p. 889. doi: 10.1016/0013-4686(85)80146-8
    [57]
    M.A. Geyer, Thermal storage for solar power plants, Sol. Power Plants, 7(1991), p. 199.
    [58]
    A.G. Fernández, H. Galleguillos, and F.J. Pérez, Corrosion ability of a novel heat transfer fluid for energy storage in CSP plants, Oxid. Met., 82(2014), No. 5, p. 331.
    [59]
    T. Bauer, N. Breidenbach, N. Pfleger, D. Laing, and M. Eck, Overview of molten salt storage systems and material development for solar thermal power plants, [in] World Renewable Energy Forum, Colorado, 2(2012), p. 837.
    [60]
    Y.T. Wu, N. Ren, and Z.F. Ma, Research and application of molten salts for sensible heat storage, Energy Sci. Technol., 2(2013), No. 6, p. 586.
    [61]
    Z.H. Tian and J. Zhang, Design and research of double-tank molten salt indirect heat storage system for trough solar thermal power generation, Sol. Energy, 22(2012), p. 54.
    [62]
    A.G. Fernandez, S. Ushak, H. Galleguillos, and F.J. Pérez, Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants, Appl. Energy, 119(2014), p. 131. doi: 10.1016/j.apenergy.2013.12.061
    [63]
    D.L. Zhang, L.M. Liu, M.H. Liu, R.S. Xu, C. Gong, J. Zhang, C.L. Wang, S.Z. Qiu, and G.H. Su, Review of conceptual design and fundamental research of molten salt reactors in China, Int. J. Energy Res., 42(2018), No. 5, p. 1834. doi: 10.1002/er.3979
    [64]
    A.C.C. Tseung, Past, present and future of fuel cells, Battery Bimonthly, 32(2002), p. 130.
    [65]
    S. Frangini and A. Masi, Molten carbonates for advanced and sustainable energy applications: Part Ⅱ. Review of recent literature, Int. J. Hydrogen Energy, 41(2016), No. 42, p. 18971. doi: 10.1016/j.ijhydene.2016.08.076
    [66]
    Q.Q. Yang and S.Z. Duan, The new developments of molten salt electrochemistry, Electrochemistry, 7(2001), No. 1, p. 14.
    [67]
    T. Oishi, K. Koyama, S. Alam, M. Tanaka, and J.C. Lee, Recovery of high purity copper cathode from printed circuit boards using ammoniacal sulfate or chloride solutions, Hydrometallurgy, 89(2007), No. 1, p. 82.
    [68]
    C.M. Du, C. Shang, X.J. Gong, T. Wang, and X.G. Wei, Plasma methods for metals recovery from metal-containing waste, Waste Manage., 77(2018), p. 373. doi: 10.1016/j.wasman.2018.04.026
    [69]
    K. Binnemans, P.T. Jones, B. Blanpain, T. Van Gerven, Y.X. Yang, A. Walton, and M. Buchert, Recycling of rare earths: a critical review, J. Clean. Prod., 51(2013), p. 1. doi: 10.1016/j.jclepro.2012.12.037
    [70]
    L.J. Chen, Z.L. Li, A. Gong, L. Tian, and Z.F. Xu, Research progress of rare earth recovery from rare earth waste, J. Chin. Soc. Rare Earths, 37(2019), No. 3, p. 259.
    [71]
    A. Abbasalizadeh, L. Teng, S. Seetharaman, J. Sietsma, and Y. Yang, Rare earth extraction from NdFeB magnets and rare earth oxides using aluminum chloride/fluoride molten salts, [in] Ismar Borges De Lima and Walter Leal Filho, eds., Rare Earths Industry, Elsevier Inc, Netherlands, 2016, p. 357.
    [72]
    Z.S. Hua, J. Wang, L. Wang, Z. Zhao, X.L. Li, Y.P. Xiao, and Y.X. Yang, Selective extraction of rare earth elements from NdFeB scrap by molten chlorides, ACS Sustainable Chem. Eng., 2(2014), No. 11, p. 2536. doi: 10.1021/sc5004456
    [73]
    A. Abbasalizadeh, A. Malfliet, S. Seetharaman, J. Sietsma, and Y.X. Yang, Electrochemical recovery of rare earth elements from magnets: conversion of rare earth based metals into rare earth fluorides in molten salts, Mater. Trans., 58(2017), No. 3, p. 400. doi: 10.2320/matertrans.MK201617
    [74]
    A. Abbasalizadeh, A. Malfliet, S. Seetharaman, J. Sietsma, and Y.X. Yang, Electrochemical extraction of rare earth metals in molten fluorides: conversion of rare earth oxides into rare earth fluorides using fluoride additives, J. Sustainable Metall., 3(2017), No. 3, p. 627. doi: 10.1007/s40831-017-0120-x
    [75]
    M. Tanaka, T. Oki, K. Koyama, H. Narita, and T. Oishi, Recycling of rare Earths from Scrap, [in] Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, 2015.
    [76]
    A.M. Martinez, O. Kjos, E. Skybakmoen, A. Solheim, and G.M. Haarberg, Extraction of rare earth metals from Nd-based scrap by electrolysis from molten salts, ECS Trans., 50(2012), No. 11, p. 453.
    [77]
    K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochemical formation of Dy–Ni alloys in molten NaCl–KCl–DyCl3, Electrochim. Acta, 106(2013), p. 293. doi: 10.1016/j.electacta.2013.05.095
    [78]
    K. Yasuda, S. Kobayashi, T. Nohira, and R. Hagiwara, Electrochemical formation of Nd–Ni alloys in molten NaCl–KCl–NdCl3, Electrochim. Acta, 92(2013), p. 349. doi: 10.1016/j.electacta.2013.01.049
    [79]
    H. Konishi, H. Ono, T. Oishi, and T. Nohira, Separation of Dy from model magnet scraps using molten salt electrochemical process, J. Jpn. Soc. Exp. Mech., 12(2012), p. s243. doi: 10.11395/jjsem.12.s243
    [80]
    H. Konishi, H. Ono, E. Takeuchi, T. Nohira, and T. Oishi, Separation of Dy from Nd–Fe–B magnet scraps using molten salt electrolysis, ECS Trans., 64(2014), No. 4, p. 593. doi: 10.1149/06404.0593ecst
    [81]
    Y. Kamimoto, T. Itoh, K. Kuroda, and R. Ichino, Recovery of rare-earth elements from neodymium magnets using molten salt electrolysis, J. Mater. Cycles Waste Manage., 19(2017), No. 3, p. 1017. doi: 10.1007/s10163-016-0563-3
    [82]
    Y. Kamimoto, G. Yoshimura, T. Itoh, K. Kuroda, and R. Ichino, Leaching of rare earth elements from neodymium magnet using electrochemical method, Trans. Mater. Res. Soc. Jpn., 40(2015), No. 4, p. 343. doi: 10.14723/tmrsj.40.343
    [83]
    Y.S. Yang, C.Q. Lan, L.Y. Guo, Z.Q. An, Z.W. Zhao, and B.W. Li, Recovery of rare-earth element from rare-earth permanent magnet waste by electro-refining in molten fluorides, Sep. Purif. Technol., 233(2020), art. No. 116030. doi: 10.1016/j.seppur.2019.116030
    [84]
    D. Vaden, S.X. Li, B.R. Westphal, K.B. Davies, T.A. Johnson, and D.M. Pace, Engineering-scale liquid cadmium cathode experiments, Nucl. Technol., 162(2008), No. 2, p. 124. doi: 10.13182/NT08-A3938
    [85]
    E.Y. Choi and S.M. Jeong, Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology, Prog. Nat. Sci. Mater., 25(2015), No. 6, p. 572. doi: 10.1016/j.pnsc.2015.11.001
    [86]
    H. Tang, Y.M. Ren, L. Shao, Y. Zhong, and R. Gao, Development of pyroprocessing of spent nuclear fuel by molten salts electrolysis, J. Nucl. Radiochem., 39(2017), No. 6, p. 385.
    [87]
    J.M. Hur, C.S. Seo, S.S. Hong, D.S. Kang, and S.W. Park, Metallization of U3O8 via catalytic electrochemical reduction with Li2O in LiCl molten salt, React. Kinet. Catal. Lett., 80(2003), No. 2, p. 217. doi: 10.1023/B:REAC.0000006128.15961.1d
    [88]
    S.B. Park, B.H. Park, S.M. Jeong, J.M. Hur, C.S. Seo, S.H. Choi, and S.W. Park, Characteristics of an integrated cathode assembly for the electrolytic reduction of uranium oxide in a LiCl–Li2O molten salt, J. Radioanal. Nucl. Chem., 268(2006), No. 3, p. 489. doi: 10.1007/s10967-006-0196-4
    [89]
    S.M. Jeong, S.B. Park, S.S. Hong, C.S. Seo, and S.W. Park, Electrolytic production of metallic uranium from U3O8 in a 20-kg batchscale reactor, J. Radioanal. Nucl. Chem., 268(2006), No. 2, p. 349. doi: 10.1007/s10967-006-0172-z
    [90]
    Y. Sakamura and T. Omori, Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels, Nucl. Technol., 171(2010), No. 3, p. 266. doi: 10.13182/NT10-A10861
    [91]
    E.Y. Choi, J.W. Lee, J.J. Park, J.M. Hur, J.K. Kim, K.Y. Jung, and S.M. Jeong, Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt, Chem. Eng. J., 207-208(2012), p. 514.
    [92]
    E.Y. Choi, J.M. Hur, I.K. Choi, S.G. Kwon, D.S. Kang, S.S. Hong, H.S. Shin, M.A. Yoo, and S.M. Jeong, Electrochemical reduction of porous 17 kg uranium oxide pellets by selection of an optimal cathode/anode surface area ratio, J. Nucl. Mater., 418(2011), No. 1-3, p. 87.
    [93]
    Y. Shin, I. Kim, S. Oh, C. Park, and C. Lee, Lithium recovery from radioactive molten salt wastes by electrolysis, J. Radioanal. Nucl. Chem., 243(2000), No. 3, p. 639. doi: 10.1023/A:1010601816105
    [94]
    J.S. Zhang, Electrochemistry of actinides and fission products in molten salts-Data review, J. Nucl. Mater., 447(2014), No. 1-3, p. 271. doi: 10.1016/j.jnucmat.2013.12.017
    [95]
    K. Kinoshita, T. Inoue, S.P. Fusselman, D.L. Grimmett, C.L. Krueger, and T.S. Storvick, Electrodeposition of uranium and transuranic elements onto solid cathode in LiCl–KCl/Cd system for pyrometallurgical partitioning, J. Nucl. Sci. Technol., 40(2003), No. 7, p. 524. doi: 10.1080/18811248.2003.9715387
    [96]
    S.W. Kwon, D.H. Ahn, E.H. Kim, and H.G. Ahn, A study on the recovery of actinide elements from molten LiCl–KCl eutectic salt by an electrochemical separation, J. Ind. Eng. Chem., 15(2009), No. 1, p. 86. doi: 10.1016/j.jiec.2008.08.006
    [97]
    J. Park, S. Choi, S. Sohn, K.R. Kim, and I.S. Hwanga, Cyclic voltammetry on zirconium redox reactions in LiCl–KCl–ZrCl4 at 500°C for electrorefining contaminated zircaloy-4 cladding, J. Electrochem. Soc., 161(2014), No. 3, p. H97. doi: 10.1149/2.046403jes
    [98]
    C.H. Lee, K.H. Kang, M.K. Jeon, C.M. Heo, and Y.L. Lee, Electroreflning of zirconium from zircaloy-4 cladding hulls in LiCl–KCl molten salts, J. Electrochem. Soc., 159(2012), No. 8, p. D463. doi: 10.1149/2.012208jes
    [99]
    Y.L. Lee, C.H. Lee, M.K. Jeon, and K.H. Kang, Studies on the electrochemical dissolution for the treatment of 10 g-scale zircaloy-4 cladding hull wastes in LiCl–KCl molten salts, J. Korean Radioact. Waste Soc., 10(2012), No. 4, p. 273. doi: 10.7733/jkrws.2012.10.4.273
    [100]
    C.H. Lee, M.K. Jeon, C.M. Heo, Y.L. Lee, K.H. Kang, and G.I. Park, Effect of Zr oxide on the electrochemical dissolution of zircaloy-4 cladding tubes, J. Electrochem. Soc., 159(2012), No. 11, p. E171. doi: 10.1149/2.031212jes
    [101]
    C.H. Lee, Y.L. Lee, M.K. Jeon, Y.T. Choi, K.H. Kang, and G.I. Park, Effects of pretreatment processes for Zr electrorefining of oxidized Zircaloy-4 cladding tubes, J. Nucl. Mater., 449(2014), No. 1-3, p. 93. doi: 10.1016/j.jnucmat.2014.02.034
    [102]
    R. Fujita, H. Nakamura, K. Mizuguchi, M. Sato, T. Shibano, Y. Ito, T. Goto, T. Terai, and S. Ogawa, Zirconium recovery process for spent zircaloy components from light water reactor (LWR) by electrorefining in molten salts, Electrochemistry, 73(2005), No. 8, p. 751. doi: 10.5796/electrochemistry.73.751
    [103]
    T. Goto, T. Nohira, R. Hagiwara, and Y. Ito, Selected topics of molten fluorides in the field of nuclear engineering, J. Fluorine Chem., 130(2009), No. 1, p. 102. doi: 10.1016/j.jfluchem.2008.07.016
    [104]
    C.H. Lee, D.Y. Kang, M.K. Jeon, K.H. Kang, S.W. Paek, D.H. Ahn, and K.T. Park, Addition effect of fluoride compounds for Zr electrorefining in LiCl–KCl molten salts, Int. J. Electrochem. Sci., 11(2016), p. 566.
    [105]
    Y. Akai and R. Fujita, Development of transuranium element recovery from high-level radioactive liquid waste, J. Nucl. Sci. Technol., 33(1996), No. 10, p. 807. doi: 10.1080/18811248.1996.9732007
    [106]
    L. Cassayre, P. Palau, P. Chamelot, and L. Massot, Properties of low-temperature melting electrolytes for the aluminum electrolysis process: A review, J. Chem. Eng. Data, 55(2010), No. 11, p. 4549. doi: 10.1021/je100214x
    [107]
    M. Ueda, S. Tsukamoto, S. Konda, and T. Ohtsuka, Recovery of aluminum from oxide particles in aluminum dross using AlF3-NaF-BaCl2 molten salt, J. Appl. Electrochem., 35(2005), No. 9, p. 925. doi: 10.1007/s10800-005-5289-1
    [108]
    M. Ueda, M. Amemiya, T. Ishikawa, and T. Ohtsuka, Recovery of aluminum alloy from aluminum dross by treatment of chloride-fluoride mixture melt, J. Jpn. Inst. Met., 63(1999), No. 3, p. 279. doi: 10.2320/jinstmet1952.63.3_279
    [109]
    X.Y. Yan, Chemical and electrochemical processing of aluminum dross using molten salts, Metall. Mater. Trans. B, 39(2008), No. 2, p. 348. doi: 10.1007/s11663-008-9135-9
    [110]
    L. Xu, Y. Xiao, A. van Sandwijk, Q. Xu, and Y. Yang, Production of nuclear grade zirconium: A review, J. Nucl. Mater., 466(2015), p. 21. doi: 10.1016/j.jnucmat.2015.07.010
    [111]
    K.T. Park, T.H. Lee, N.C. Jo, H.H. Nersisyan, B.S. Chun, H.H. Lee, and J.H. Lee, Purification of nuclear grade Zr scrap as the high purity dense Zr deposits from Zirlo scrap by electrorefining in LiF–KF–ZrF4 molten fluorides, J. Nucl. Mater., 436(2013), No. 1-3, p. 130. doi: 10.1016/j.jnucmat.2013.01.310
    [112]
    D.J. Park, S.H. Kim, K.T. Park, J.H. Mun, H.H. Lee, and J.H. Lee, Electrorefining behavior of zirconium scrap with multiple cathode in fluoride-based molten salt, J. Nucl. Fuel Cycle Waste Technol., 13(2015), No. 1, p. 11. doi: 10.7733/jnfcwt.2015.13.1.11
    [113]
    X.L. Zou and X.G. Lu, Preparation of titanium alloy by direct reduction of Ti-bearing blast furnace slag, Chin. J. Nonferrous Met., 20(2010), No. 9, p. 1829.
    [114]
    X.L. Zou, X.G. Lu, W. Xiao, Z.F. Zhou, Q.D. Zhong, and W.Z. Ding, Direct electrochemical extraction of Ti5Si3 from Ti/Si-containing metal oxide compounds in molten CaCl2, J. Shanghai Jiaotong Univ., 18(2013), p. 111. doi: 10.1007/s12204-013-1373-6
    [115]
    X.L. Zou, X.G. Lu, Z.F. Zhou, C.H. Li, and W.Z. Ding, Direct selective extraction of titanium silicide Ti5Si3 from multi-component Ti-bearing compounds in molten salt by an electrochemical process, Electrochim. Acta, 56(2011), No. 24, p. 8430. doi: 10.1016/j.electacta.2011.07.026
    [116]
    S.H. Li, X.L. Zou, K. Zheng, X.G. Lu, C.Y. Chen, X. Li, Q. Xu, and Z.F. Zhou, Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-bearing blast furnace slag in molten CaCl2, Metall. Mater. Trans. B, 49(2018), No. 2, p. 790. doi: 10.1007/s11663-018-1192-0
    [117]
    D. Mishra, S. Sinha, K. Sahu, A. Agrawal, and R. Kumar, Recycling of secondary tungsten resources, Trans. Indian Inst. Met., 70(2017), No. 2, p. 479. doi: 10.1007/s12666-016-1003-8
    [118]
    P.K. Meherotra, Reduction of environmental impact in hardmetal technologies, Met. Powder Rep., 72(2017), No. 4, p. 267. doi: 10.1016/j.mprp.2016.02.052
    [119]
    R. Srivastava, J. Lee, M. Bae, and V. Kumar, Reclamation of tungsten from carbide scraps and spent materials, J. Mater. Sci., 54(2019), No. 1, p. 83. doi: 10.1007/s10853-018-2876-1
    [120]
    A. Shemi, A. Magumise, S. Ndlovu, and N. Sacks, Recycling of tungsten carbide scrap metal: A review of recycling methods and future prospects, Miner. Eng., 122(2018), p. 195. doi: 10.1016/j.mineng.2018.03.036
    [121]
    T. Kojima, T. Shimizu, R. Sasai, and H. Itoh, Recycling process of WC–Co cermets by hydrothermal treatment, J. Mater. Sci., 40(2005), No. 19, p. 5167. doi: 10.1007/s10853-005-4407-0
    [122]
    C. Edtmaier, R. Schiesser, C. Meissl, W.D. Schubert, A. Bock, A. Schoen, and B. Zeiler, Selective removal of the cobalt binder in WC/Co based hardmetal scraps by acetic acid leaching, Hydrometallurgy, 76(2005), No. 1-2, p. 63. doi: 10.1016/j.hydromet.2004.09.002
    [123]
    C.S. Freemantle, N. Sacks, M. Topic, and C.A. Pineda-Vargas, PIXE characterization of byproducts resulting from the zinc recycling of industrial cemented carbides, Nucl. Instrum. Methods Phys. Res., 363(2015), p. 167. doi: 10.1016/j.nimb.2015.07.064
    [124]
    B.X. Liu, A.H. Shi, Q. Su, G.J. Chen, W. Li, L.N. Zhang, and B. Yang, Recovery of tungsten carbides to prepare the ultrafine WC–Co composite powder by two-step reduction process, Powder Technol., 306(2016), p. 113.
    [125]
    X.L. Xi, G.H. Si, Z.R. Nie, and L.W. Ma, Electrochemical behavior of tungsten ions from WC scrap dissolution in a chloride melt, Electrochim. Acta, 184(2015), p. 233. doi: 10.1016/j.electacta.2015.10.071
    [126]
    G.H. Si, X.L. Xi, Z.R. Nie, L.W. Zhang, and L.W. Ma, Preparation and characterization of tungsten nanopowders from WC scrap in molten salts, Int. J. Refract. Met. H., 54(2016), p. 422. doi: 10.1016/j.ijrmhm.2015.10.002
    [127]
    Q.H. Zhang, X.L. Xi, Z.R. Nie, L.W. Zhang, and L.W. Ma, Electrochemical dissolution of cemented carbide scrap and electrochemical preparation of tungsten and cobalt metals, Int. J. Refract. Met. Hard Mater., 79(2019), p. 145. doi: 10.1016/j.ijrmhm.2018.12.001
    [128]
    X.J. Xiao, X.L. Xi, Z.R. Nie, L.W. Zhang, and L.W. Ma, Direct electrochemical preparation of cobalt, tungsten, and tungsten carbide from cemented carbide scrap, Metall. Mater. Trans. B, 48(2017), No. 1, p. 692. doi: 10.1007/s11663-016-0836-1
    [129]
    L.W. Zhang, Z.R. Nie, X.L. Xi, L.W. Ma, X.J. Xiao, and M. Li, Electrochemical dissolution of tungsten carbide in NaCl-KCl-Na2WO4 molten salt, Metall. Mater. Trans. B, 49(2018), No. 1, p. 334. doi: 10.1007/s11663-017-1125-3
    [130]
    L.W. Zhang, Z.R. Nie, X.L. Xi, and L.W. Ma, Electrochemical separation and extraction of cobalt and tungsten from cemented scrap, Sep. Purif. Technol., 195(2018), p. 244. doi: 10.1016/j.seppur.2017.12.022
    [131]
    M. Li, X.L. Xi, Z.R. Nie, L.W. Ma, and Q.Q. Liu, Electrochemical extraction of tungsten derived from WC scrap and electrochemical properties of tungsten ion in LiCl–KCl molten salt, J. Electrochem. Soc., 163(2016), No. 13, p. D728. doi: 10.1149/2.1131613jes
    [132]
    M. Li, Electrochemical studies on the reduction behavior of Co2+ in eutectic NaF–KF melt, Int. J. Electrochem. Sci., 13(2018), p. 4208.
    [133]
    X.L. Xi, Q.Q. Liu, Z.R. Nie, M. Li, and L.W. Ma, Electrochemical preparation of tungsten and cobalt from cemented carbide scrap in NaF-KF molten salts, Int. J. Refract. Met. Hard Mater., 70(2018), p. 77. doi: 10.1016/j.ijrmhm.2017.09.009
    [134]
    M. Li, X.L. Xi, Z.R. Nie, L.W. Ma, and Q.Q. Liu, Recovery of tungsten from WC–Co hard metal scraps using molten salts electrolysis, J. Mater. Res. Technol., 8(2019), No. 1, p. 1440. doi: 10.1016/j.jmrt.2018.10.010
    [135]
    L.W. Zhang, Z.R. Nie, and X.L. Xi, Preparation of tungsten nanoparticles from spent tungsten carbide by molten salt electrolysis, Mater. Sci. Forum, 913(2018), p. 961. doi: 10.4028/www.scientific.net/MSF.913.961
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Share Article

    Article Metrics

    Article Views(7194) PDF Downloads(595) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return