Shenxu Bao, Yongpeng Luo, and Yimin Zhang, Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 177-184. https://doi.org/10.1007/s12613-020-2182-1
Cite this article as:
Shenxu Bao, Yongpeng Luo, and Yimin Zhang, Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification, Int. J. Miner. Metall. Mater., 29(2022), No. 1, pp. 177-184. https://doi.org/10.1007/s12613-020-2182-1
Research Article

Fabrication of green one-part geopolymer from silica-rich vanadium tailing via thermal activation and modification

+ Author Affiliations
  • Corresponding author:

    Shenxu Bao    E-mail: sxbao@whut.edu.cn

  • Received: 26 June 2020Revised: 10 August 2020Accepted: 31 August 2020Available online: 3 September 2020
  • The aim of this investigation was to prepare geopolymeric precursor from vanadium tailing (VT) by thermal activation and modification. For activation, a homogeneous blend of VT and sodium hydroxide was calcinated at an elevated temperature and then modified with metakaolin to produce a geopolymeric precursor. During the thermal activation, the VT was corroded by sodium hydroxide and then sodium silicate formed on the particle surfaces. After water was added, the sodium silicate coating dissolved to release silicon species, which created an alkaline solution environment. The metakaolin then dissolved in the alkaline environment to generate aluminum species, which was followed by geopolymerization. The VT particles were connected by a gel produced during geopolymerization, which yielded a geopolymer with excellent mechanical performance. This investigation not only improves the feasibility of using geopolymer technology for large-scale and in-situ applications, but also promotes the utilization of VT and other silica-rich solid wastes.

  • loading
  • [1]
    R.M. Andrew, Global CO2 emissions from cement production, 1928–2018, Earth Syst. Sci. Data, 11(2019), No. 4, p. 1675. doi: 10.5194/essd-11-1675-2019
    [2]
    A. Hasanbeigi, L. Price, H.Y. Lu, and W. Lan, Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants, Energy, 35(2010), No. 8, p. 3461. doi: 10.1016/j.energy.2010.04.046
    [3]
    M.C.G. Juenger, F. Winnefeld, J.L. Provis, and J.H. Ideker, Advances in alternative cementitious binders, Cem. Concr. Res, 41(2011), No. 12, p. 1232. doi: 10.1016/j.cemconres.2010.11.012
    [4]
    C.J. Shi, A.F. Jiménez, and A. Palomo, New cements for the 21st century: The pursuit of an alternative to Portland cement, Cem. Concr. Res, 41(2011), No. 7, p. 750. doi: 10.1016/j.cemconres.2011.03.016
    [5]
    A. Nmiri, M. Duc, N. Hamdi, O. Yazoghli-Marzouk, and E. Srasra, Replacement of alkali silicate solution with silica fume in metakaolin-based geopolymers, Int. J. Miner. Metall. Mater, 26(2019), No. 5, p. 555. doi: 10.1007/s12613-019-1764-2
    [6]
    B.C. McLellan, R.P. Williams, J. Lay, A. van Riessen, and G.D. Corder, Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement, J. Cleaner Prod, 19(2011), No. 9-10, p. 1080. doi: 10.1016/j.jclepro.2011.02.010
    [7]
    A. Mellado, C. Catalán, N. Bouzón, M.V. Borrachero, J.M. Monzó, and J. Payá, Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route, RSC Adv, 4(2014), No. 45, p. 23846. doi: 10.1039/C4RA03375B
    [8]
    C.C.S. Chan, D. Thorpe, and M. Islam, An evaluation carbon footprint in fly ash based geopolymer cement and ordinary Portland cement manufacture, [in] 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 2015, p. 254.
    [9]
    X.Y. Zhuang, L. Chen, S. Komarneni, C.H. Zhou, D.S. Tong, H.M. Yang, W.H. Yu, and H. Wang, Fly ash-based geopolymer: Clean production, properties and applications, J. Cleaner Prod, 125(2016), p. 253. doi: 10.1016/j.jclepro.2016.03.019
    [10]
    Z. Liu, N.N. Shao, D.M. Wang, J.F. Qin, T.Y. Huang, W. Song, M.X. Lin, J.S. Yuan, and Z. Wang, Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash, Int. J. Miner. Metall. Mater, 21(2014), No. 1, p. 89. doi: 10.1007/s12613-014-0870-4
    [11]
    P. Chindaprasirt, U. Rattanasak, P. Vongvoradit, and S. Jenjirapanya, Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials, Int. J. Miner. Metall. Mater, 19(2012), No. 9, p. 872. doi: 10.1007/s12613-012-0641-z
    [12]
    I. Ismail, S.A. Bernal, J.L. Provis, R. San Nicolas, S. Hamdan, and J.S.J. van Deventer, Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cem. Concr. Compos, 45(2014), p. 125. doi: 10.1016/j.cemconcomp.2013.09.006
    [13]
    Y.C. Li, X.B. Min, Y. Ke, D.G. Liu, and C.J. Tang, Preparation of red mud-based geopolymer materials from MSWI fly ash and red mud by mechanical activation, Waste Manage, 83(2019), p. 202. doi: 10.1016/j.wasman.2018.11.019
    [14]
    S.N.M. Hairi, G.N.L. Jameson, J.J. Rogers, and K.J.D. MacKenzie, Synthesis and properties of inorganic polymers (geopolymers) derived from Bayer process residue (red mud) and bauxite, J. Mater. Sci, 50(2015), No. 23, p. 7713. doi: 10.1007/s10853-015-9338-9
    [15]
    X. Ren, L.Y. Zhang, D. Ramey, B. Waterman, and S. Ormsby, Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer, J. Mater. Sci, 50(2015), No. 3, p. 1370. doi: 10.1007/s10853-014-8697-y
    [16]
    S. Moukannaa, M. Loutou, M. Benzaazoua, L. Vitola, J. Alami, and R. Hakkou, Recycling of phosphate mine tailings for the production of geopolymers, J. Cleaner Prod, 185(2018), p. 891. doi: 10.1016/j.jclepro.2018.03.094
    [17]
    K.D.C.E.S. Defáveri, L.F. dos Santos, J.M.F. de Carvalho, R.A.F. Peixoto, and G.J. Brigolini, Iron ore tailing-based geopolymer containing glass wool residue: A study of mechanical and microstructural properties, Constr. Build. Mater, 220(2019), p. 375. doi: 10.1016/j.conbuildmat.2019.05.181
    [18]
    C. Zhang, L.X. Li, Z.T. Yuan, X.Y. Xu, Z.G. Song, and Y.R. Zhang, Mechanical properties of siderite and hematite from DFT calculation, Miner. Eng, 146(2020), art. No. 106107. doi: 10.1016/j.mineng.2019.106107
    [19]
    P.S. Singh, T. Bastow, and M. Trigg, Structural studies of geopolymers by 29Si and 27Al MAS-NMR, J. Mater. Sci, 40(2005), No. 15, p. 3951. doi: 10.1007/s10853-005-1915-x
    [20]
    P. Duxson, A. Fernández-Jiménez, J.L. Provis, G.C. Lukey, A. Palomo, and J.S.J. van Deventer, Geopolymer technology: The current state of the art, J. Mater. Sci, 42(2007), No. 9, p. 2917. doi: 10.1007/s10853-006-0637-z
    [21]
    J. Davidovits, Geopolymer Chemistry and Applications, 4th ed., Geopolymer Institute, Saint Quentin, 2015, p. 437.
    [22]
    E.N. Kani, A. Allahverdi, and J.L. Provis, Efflorescence control in geopolymer binders based on natural pozzolan, Cem. Concr. Compos, 34(2012), No. 1, p. 25. doi: 10.1016/j.cemconcomp.2011.07.007
    [23]
    T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen, One-part alkali-activated materials: A review, Cem. Concr. Res, 103(2018), p. 21. doi: 10.1016/j.cemconres.2017.10.001
    [24]
    A. Hajimohammadi, J.L. Provis, and J.S.J. van Deventer, One-part geopolymer mixes from geothermal silica and sodium aluminate, Ind. Eng. Chem. Res, 47(2008), No. 23, p. 9396. doi: 10.1021/ie8006825
    [25]
    P. Sturm, S. Greiser, G.J.G. Gluth, C. Jäger, and H.J.H. Brouwers, Degree of reaction and phase content of silica-based one-part geopolymers investigated using chemical and NMR spectroscopic methods, J. Mater. Sci, 50(2015), No. 20, p. 6768. doi: 10.1007/s10853-015-9232-5
    [26]
    C. Ma, G.C. Long, Y. Shi, and Y.J. Xie, Preparation of cleaner one-part geopolymer by investigating different types of commercial sodium metasilicate in China, J. Cleaner Prod, 201(2018), p. 636. doi: 10.1016/j.jclepro.2018.08.060
    [27]
    A. Hajimohammadi, T. Ngo, and A. Kashani, Sustainable one-part geopolymer foams with glass fines versus sand as aggregates, Constr. Build. Mater, 171(2018), p. 223. doi: 10.1016/j.conbuildmat.2018.03.120
    [28]
    S.Y. Oderji, B. Chen, M.R. Ahmad, and S.F.A. Shah, Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators, J. Cleaner Prod, 225(2019), p. 1. doi: 10.1016/j.jclepro.2019.03.290
    [29]
    Y.M. Liew, C.Y. Heah, L.Y. Li, N.A. Jaya, M.M.A.B. Abdullah, S.J. Tan, and K. Hussin, Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder, Constr. Build. Mater, 156(2017), p. 9. doi: 10.1016/j.conbuildmat.2017.08.110
    [30]
    D.W. Feng, J.L. Provis, and J.S.J. van Deventer, Thermal activation of albite for the synthesis of one-part mix geopolymers, J. Am. Ceram. Soc, 95(2012), No. 2, p. 565. doi: 10.1111/j.1551-2916.2011.04925.x
    [31]
    H.A. Abdel-Gawwad and K.A. Khalil, Application of thermal treatment on cement kiln dust and feldspar to create one-part geopolymer cement, Constr. Build. Mater, 187(2018), p. 231. doi: 10.1016/j.conbuildmat.2018.07.161
    [32]
    N. Ye, J.K. Yang, S. Liang, Y. Hu, J.P. Hu, B. Xiao, and Q.F. Huang, Synthesis and strength optimization of one-part geopolymer based on red mud, Constr. Build. Mater, 111(2016), p. 317. doi: 10.1016/j.conbuildmat.2016.02.099
    [33]
    M.X. Peng, Z.H. Wang, S.H. Shen, Q.G. Xiao, L.J. Li, Y.C. Tang, and L.L. Hu, Alkali fusion of bentonite to synthesize one-part geopolymeric cements cured at elevated temperature by comparison with two-part ones, Constr. Build. Mater, 130(2017), p. 103. doi: 10.1016/j.conbuildmat.2016.11.010
    [34]
    N.Y. Mostafa, Q. Mohsen, and A. El-maghraby, Characterization of low-purity clays for geopolymer binder formulation, Int. J. Miner. Metall. Mater, 21(2014), No. 6, p. 609. doi: 10.1007/s12613-014-0949-y
    [35]
    J.H. Liu, Y.C. Zhou, A.X. Wu, and H.J. Wang, Reconstruction of broken Si–O–Si bonds in iron ore tailings (IOTs) in concrete, Int. J. Miner. Metall. Mater, 26(2019), No. 10, p. 1329. doi: 10.1007/s12613-019-1811-z
    [36]
    Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116. doi: 10.1016/j.hydromet.2011.06.002
    [37]
    B. Chen, S.X. Bao, Y.M. Zhang, and S. Li, A high-efficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound, Sep. Purif. Technol, 240(2020), art. No. 116624. doi: 10.1016/j.seppur.2020.116624
    [38]
    J.Y. Xiang, Q.Y. Huang, W. Lv, G.S. Pei, X.W. Lv, and C.G. Bai, Recovery of tailings from the vanadium extraction process by carbothermic reduction method: Thermodynamic, experimental and hazardous potential assessment, J. Hazard. Mater, 357(2018), p. 128. doi: 10.1016/j.jhazmat.2018.05.064
    [39]
    Y.P. Luo, S.X. Bao, and Y.M. Zhang, Preparation of one-part geopolymeric precursors using vanadium tailing by thermal activation, J. Am. Ceram. Soc, 103(2020), No. 2, p. 779. doi: 10.1111/jace.16835
    [40]
    Z.H. Zhang, J.L. Provis, X. Ma, A. Reid, and H. Wang, Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers, Cem. Concr. Compos, 92(2018), p. 165. doi: 10.1016/j.cemconcomp.2018.06.010
    [41]
    M.A. Longhi, Z.H. Zhang, E.D. Rodríguez, A.P. Kirchheim, and H. Wang, Efflorescence of alkali-activated cements (geopolymers) and the impacts on material structures: A critical analysis, Front. Mater, 6(2019), art. No. 89. doi: 10.3389/fmats.2019.00089
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Share Article

    Article Metrics

    Article Views(5097) PDF Downloads(74) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return