Cite this article as:

Research Article

Effect of graphene addition on physico-mechanical and tribological properties of Cu-nanocomposites

+ Author Affiliations
  • Received: 2 June 2020Revised: 6 August 2020Accepted: 31 August 2020Available online: 5 September 2020
  • This paper presents experimental investigation of the mechanical and tribological properties of Cu-GNs nanocomposites. We employed electroless coating process to coat GNs with Ag particles to avoid their reaction with Cu and formation of intermetallic phases. We studied the effect of GNs content on structural, mechanical and tribological properties of the produced nanocomposites. The results showed that the coating process is an efficient technique to avoid reaction between Cu and C and the formation intermetallic phases. The addition of GNs should be done wisely since the mechanical and tribological properties improved with increasing GNs up to a certain threshold values. The optimum GNs proved is 0.5%, at which hardness, wear rate and coefficient of friction are improved by 13%, 81.9% and 49.8%, respectively, compared to Cu- nanocomposite. These improved properties are due to the reduced crystallite size, presence of GNs and homogenous distribution of constituents.
  • 加载中
  •  

  • [1] Xing-hai Yang,Xiao-hua Chen,Shi-wei Pan,Zi-dong Wang,Kai-xuan Chen,Da-yong Li, and Jun-wei Qin, Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu−Nb addition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2159-0
    [2] Li-zi He, Yi-heng Cao, Yi-zhou Zhou, and  Jian-zhong Cui, Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1547-1
    [3] Tong Chen, Li-hua Yu, and  Jun-hua Xu, Influence of Ag content on the microstructure, mechanical, and tribological properties of TaVN-Ag films, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1553-3
    [4] Xiao-feng Wang, Ming-xing Guo, Cun-qiang Ma, Jian-bin Chen, Ji-shan Zhang, and  Lin-zhong Zhuang, Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1645-0
    [5] Xiao-hui Ao, Shu-ming Xing, Bai-shui Yu, and  Qing-you Han, Effect of Ce addition on microstructures and mechanical properties of A380 aluminum alloy prepared by squeeze-casting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1602-y
    [6] Lavish Kumar Singh, Alok Bhadauria, Amirthalingam Srinivasan, Uma Thanu Subramonia Pillai, and  Bellambettu Chandrasekhara Pai, Effects of gadolinium addition on the microstructure and mechanical properties of Mg-9Al alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1476-4
    [7] Mohammad Baghani and  Mahmood Aliofkhazraei, CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1524-0
    [8] M. Sarkari Khorrami, M. Kazeminezhad, Y. Miyashita, and  A. H. Kokabi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1408-3
    [9] Zhi-hao Zhang, Jie Xue, Yan-bin Jiang, and  Feng Jin, Effect of pre-annealing treatment on the microstructure and mechanical properties of extruded Al-Zn-Mg-Cu alloy bars, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1521-3
    [10] Mohammad Baghani, Mahmood Aliofkhazraei, and  Mehdi Askari, Cu-Zn-Al2O3 nanocomposites:study of microstructure,corrosion,and wear properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1427-0
    [11] Zuo-li Li, Jun Zhao, Jia-lin Sun, Feng Gong, and  Xiu-ying Ni, Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1533-z
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(833) PDF downloads(29) Cited by()

Proportional views

Effect of graphene addition on physico-mechanical and tribological properties of Cu-nanocomposites

  • Corresponding author:

    Adnan I. Khdair    E-mail: akhdair@kau.edu.sa; akhdair@just.edu.jo

  • 1. Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, Saudi Arabia
  • 2. Jordan University of Science and Technology, Mech. Eng. Dep., P.O. Box 3030, Irbid 2011, Jordan
  • 3. Mechanical Department, Higher Technological Institute, Tenth of Ramadan city, Egypt

Abstract: This paper presents experimental investigation of the mechanical and tribological properties of Cu-GNs nanocomposites. We employed electroless coating process to coat GNs with Ag particles to avoid their reaction with Cu and formation of intermetallic phases. We studied the effect of GNs content on structural, mechanical and tribological properties of the produced nanocomposites. The results showed that the coating process is an efficient technique to avoid reaction between Cu and C and the formation intermetallic phases. The addition of GNs should be done wisely since the mechanical and tribological properties improved with increasing GNs up to a certain threshold values. The optimum GNs proved is 0.5%, at which hardness, wear rate and coefficient of friction are improved by 13%, 81.9% and 49.8%, respectively, compared to Cu- nanocomposite. These improved properties are due to the reduced crystallite size, presence of GNs and homogenous distribution of constituents.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return