Cite this article as: |
Xian-hu Liu, Fei-hong Wang, Cong-ying Shao, Gang-feng Du, and Bing-qing Yao, Kinetically controlled synthesis of atomically precise Ag nanoclusters for the catalytic reduction of 4-nitrophenol, Int. J. Miner. Metall. Mater., 28(2021), No. 10, pp. 1716-1725. https://doi.org/10.1007/s12613-020-2186-x |
Xian-hu Liu E-mail: liuxhv@126.com
Synthesizing atomically precise Ag nanoclusters (NCs), which is essential for the general development of NCs, is quite challenging. In this study, we report the synthesis of high-purity atomically precise Ag NCs via a kinetically controlled strategy. The Ag NCs were prepared using a mild reducing agent via a one-pot method. The as-prepared Ag NCs were confirmed to be Ag49(D-pen)24 (D-pen: D-penicillamine) on the basis of their matrix-assisted laser desorption ionization time-of-flight mass spectrometric and thermogravimetric characteristics. The interfacial structures of the Ag NCs were illustrated by proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The Ag NCs were supported on activated carbon (AC) to form Ag NCs/AC, which displayed excellent activity for the catalytic reduction of 4-nitrophenol with a kinetic reaction rate constant k of 0.21 min−1. Such a high k value indicates that the composite could outperform several previously reported catalysts. Moreover, the catalytic activity of Ag NCs/AC remained nearly constant after six times of recycle, which suggests its excellent stability.
[1] |
K.M. Pan, F.H. Wang, S.Z. Wei, S.H. Siyal, Y.P. Ren, L.J. Xu, X.C. Wu, and Q.K. Li, Low-temperature solution synthesis and characterization of enhanced titanium dioxide photocatalyst on tailored mesoporous γ-Al2O3 support, Compos. Commun., 19(2020), p. 82. doi: 10.1016/j.coco.2020.02.009
|
[2] |
K.M. Pan, K.N. Shan, S.Z. Wei, Y. Zhao, L.J. Xu, J.M. Zhu, and H.H. Wu, Two-step alcohothermal synthesis and characterization of enhanced visible-light-active WO3-coated TiO2 heterostructure, Ceram. Int., 46(2020), No. 2, p. 2102. doi: 10.1016/j.ceramint.2019.09.192
|
[3] |
O. Velgosova, E. Čižmárová, J. Málek, and J. Kavuličova, Effect of storage conditions on long-term stability of Ag nanoparticles formed via green synthesis, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1177. doi: 10.1007/s12613-017-1508-0
|
[4] |
Y.B. Wu, J. Bi, T. Lou, T.B. Song, and H.Q. Yu, Preparation of a novel PAN/cellulose acetate-Ag based activated carbon nanofiber and its adsorption performance for low-concentration SO2, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 437. doi: 10.1007/s12613-015-1091-1
|
[5] |
Z.M. Zheng, H.H. Wu, H.D. Liu, Q.B. Zhang, X. He, S.C. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets, ACS Nano, 14(2020), No. 8, p. 9545. doi: 10.1021/acsnano.9b08575
|
[6] |
K.M. Pan, K.N. Shan, S.Z. Wei, K.K. Li, J.M. Zhu, S.H. Siyal, and H.H. Wu, Enhanced photocatalytic performance of WO3−x with oxygen vacancies via heterostructuring, Compos. Commun., 16(2019), p. 106. doi: 10.1016/j.coco.2019.09.003
|
[7] |
H.H. Wu, Q.Q. Meng, H. Huang, C.T. Liu, and X.L. Wang, Tuning the indirect–direct band gap transition in the MoS2−xSex armchair nanotube by diameter modulation, Phys. Chem. Chem. Phys., 20(2018), No. 5, p. 3608. doi: 10.1039/C7CP08034D
|
[8] |
Z.G. Wang, H.H. Wu, Q. Li, F. Besenbacher, X.C. Zeng, and M.D. Dong, Self-scrolling MoS2 metallic wires, Nanoscale, 10(2018), No. 38, p. 18178. doi: 10.1039/C8NR04611E
|
[9] |
R.C. Jin, Quantum sized, thiolate-protected gold nanoclusters, Nanoscale, 2(2010), No. 3, p. 343. doi: 10.1039/B9NR00160C
|
[10] |
A. Mathew, and T. Pradeep, Noble metal clusters: Applications in energy, environment, and biology, Part. Part. Syst. Charact., 31(2014), No. 10, p. 1017. doi: 10.1002/ppsc.201400033
|
[11] |
Z.B. Gan, N. Xia, and Z.K. Wu, Discovery, mechanism, and application of antigalvanic reaction, Acc. Chem. Res., 51(2018), No. 11, p. 2774. doi: 10.1021/acs.accounts.8b00374
|
[12] |
S.X. Wang, Q. Li, X. Kang, and M.Z. Zhu, Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange, Acc. Chem. Res., 51(2018), No. 11, p. 2784. doi: 10.1021/acs.accounts.8b00327
|
[13] |
Q.F. Yao, T.K. Chen, X. Yuan, and J.P. Xie, Toward total synthesis of thiolate-protected metal nanoclusters, Acc. Chem. Res., 51(2018), No. 6, p. 1338. doi: 10.1021/acs.accounts.8b00065
|
[14] |
Z. Wang, Q.P. Qu, H.F. Su, P. Huang, R.K. Gupta, Q.Y. Liu, C.H. Tung, D. Sun, and L.S. Zheng, A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel, Sci. China Chem., 63(2020), No. 1, p. 16. doi: 10.1007/s11426-019-9638-3
|
[15] |
Z. Wang, H.F. Su, M. Kurmoo, C.H. Tung, D. Sun, and L.S. Zheng, Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel, Nat. Commun., 9(2018), No. 1, art. No. 2094. doi: 10.1038/s41467-018-04499-9
|
[16] |
Z. Wang, H.F. Su, C.H. Tung, D. Sun, and L.S. Zheng, Deciphering synergetic core-shell transformation from [Mo6O22@Ag44] to [Mo8O28@Ag50], Nat. Commun., 9(2018), art. No. 4407.
|
[17] |
J.W. Liu, L. Feng, H.F. Su, Z. Wang, Q.Q. Zhao, X.P. Wang, C.H. Tung, D. Sun, and L.S. Zheng, Anisotropic assembly of Ag52 and Ag76 vanoclusters, J. Am. Chem. Soc., 140(2018), No. 5, p. 1600. doi: 10.1021/jacs.7b12777
|
[18] |
S.S. Zhang, F. Alkan, H.F. Su, C.M. Aikens, C.H. Tung, and D. Sun, [Ag48(C≡CtBu)20(CrO4)7]: An atomically precise silver nanocluster co-protected by inorganic and organic ligands, J. Am. Chem. Soc., 141(2019), No. 10, p. 4460. doi: 10.1021/jacs.9b00703
|
[19] |
G. Li, and R.C. Jin, Atomically precise gold nanoclusters as new model catalysts, Acc. Chem. Res., 46(2013), No. 8, p. 1749. doi: 10.1021/ar300213z
|
[20] |
P. Khandelwal and P. Poddar, Fluorescent metal quantum clusters: An updated overview of the synthesis, properties, and biological applications, J. Mater. Chem. B, 5(2017), No. 46, p. 9055. doi: 10.1039/C7TB02320K
|
[21] |
H.Z. Yu, B. Rao, W. Jiang, S. Yang, and M.Z. Zhu, The photoluminescent metal nanoclusters with atomic precision, Coord. Chem. Rev., 378(2019), p. 595. doi: 10.1016/j.ccr.2017.12.005
|
[22] |
K.S. Krishna, P. Tarakeshwar, V. Mujica, and C.S.S.R Kumar, Chemically induced magnetism in atomically precise gold clusters, Small, 10(2014), No. 5, p. 907. doi: 10.1002/smll.201302393
|
[23] |
Y. Tao, M.Q. Li, J.S. Ren, and X.G. Qu, Metal nanoclusters: Novel probes for diagnostic and therapeutic applications, Chem. Soc. Rev., 44(2015), No. 23, p. 8636. doi: 10.1039/C5CS00607D
|
[24] |
T.T. Zhao, T.Y. Zhou, Q.H. Yao, C.L. Hao, and X. Chen, Metal nanoclusters: applications in environmental monitoring and cancer therapy, J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 33(2015), No. 2, p. 168. doi: 10.1080/10590501.2015.1030490
|
[25] |
Y. Yu, Z.T. Luo, D.M. Chevrier, D.T. Leong, P. Zhang, D.E. Jiang, and J.P. Xie, Identification of a highly luminescent Au22(SG)18 nanocluster, J. Am. Chem. Soc., 136(2014), No. 4, p. 1246. doi: 10.1021/ja411643u
|
[26] |
M.Z. Zhu, E. Lanni, N. Garg, M.E. Bier, and R.C. Jin, Kinetically controlled, high-yield synthesis of Au25 clusters, J. Am. Chem. Soc., 130(2008), No. 4, p. 1138. doi: 10.1021/ja0782448
|
[27] |
C.J. Zeng, C.Y. Liu, Y. Pei, and R.C. Jin, Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24, ACS Nano, 7(2013), No. 7, p. 6138. doi: 10.1021/nn401971g
|
[28] |
R.L. Donkers, D. Lee, and R.W. Murray, Synthesis and isolation of the molecule-like cluster Au38(PhCH2CH2S)24, Langmuir, 20(2004), No. 5, p. 1945. doi: 10.1021/la035706w
|
[29] |
H.F. Qian, and R.C. Jin, Ambient synthesis of Au144(SR)60 nanoclusters in methanol, Chem. Mater., 23(2011), No. 8, p. 2209. doi: 10.1021/cm200143s
|
[30] |
R.C. Jin, H.F. Qian, Z.K. Wu, Y. Zhu, M.Z. Zhu, A. Mohanty, and N. Garg, Size focusing: A methodology for synthesizing atomically precise gold nanoclusters, J. Phys. Chem. Lett., 1(2010), No. 19, p. 2903. doi: 10.1021/jz100944k
|
[31] |
H.X. Xu and K.S. Suslick, Sonochemical synthesis of highly fluorescent Ag nanoclusters, ACS Nano, 4(2010), No. 6, p. 3209. doi: 10.1021/nn100987k
|
[32] |
S.H. Liu, F. Lu, and J.J. Zhu, Highly fluorescent Ag nanoclusters: Microwave-assisted green synthesis and Cr3+ sensing, Chem. Commun., 47(2011), No. 9, p. 2661. doi: 10.1039/c0cc04276e
|
[33] |
I. Chakraborty, T. Udayabhaskararao, and T. Pradeep, High temperature nucleation and growth of glutathione protected ~Ag75 clusters, Chem. Commun., 48(2012), No. 54, p. 6788. doi: 10.1039/c2cc33099g
|
[34] |
I. Chakraborty, T. Udayabhaskararao, G.K. Deepesh, and T. Pradeep, Sunlight mediated synthesis and antibacterial properties of monolayer protected silver clusters, J. Mater. Chem. B, 1(2013), No. 33, p. 4059. doi: 10.1039/c3tb20603c
|
[35] |
T.U.B. Rao, B. Nataraju, and T. Pradeep, Ag9 quantum cluster through a solid-state route, J. Am. Chem. Soc., 132(2010), No. 46, p. 16304. doi: 10.1021/ja105495n
|
[36] |
X. Yuan, B. Zhang, Z.T. Luo, Q.F. Yao, D.T. Leong, N. Yan, and J.P. Xie, Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision, Angew. Chem. Int. Ed., 53(2014), No. 18, p. 4623. doi: 10.1002/anie.201311177
|
[37] |
Y. Yu, X. Chen, Q.F. Yao, Y. Yu, N. Yan, and J.P. Xie, Scalable and precise synthesis of thiolated Au10–12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction, Chem. Mater., 25(2013), No. 6, p. 946. doi: 10.1021/cm304098x
|
[38] |
X.H. Liu, W.H. Ding, Y.S. Wu, C.H. Zeng, Z.X. Luo, and H.B. Fu, Penicillamine-protected Ag20 nanoclusters and fluorescence chemosensing for trace detection of copper ions, Nanoscale, 9(2017), No. 11, p. 3986. doi: 10.1039/C6NR09818E
|
[39] |
T. Udaya Bhaskara Rao, and T. Pradeep, Luminescent Ag7 and Ag8 clusters by interfacial synthesis, Angew. Chem. Int. Ed., 49(2010), No. 23, p. 3925. doi: 10.1002/anie.200907120
|
[40] |
A. Baksi, M.S. Bootharaju, X. Chen, H. Häkkinen, and T. Pradeep, Ag11(SG)7: A new cluster identified by mass spectrometry and optical spectroscopy, J. Phys. Chem. C, 118(2014), No. 37, p. 21722. doi: 10.1021/jp508124b
|
[41] |
J. Yang, N. Xia, X.N. Wang, X.H. Liu, A. Xu, Z.K. Wu, and Z.X. Luo, One-pot one-cluster synthesis of fluorescent and bio-compatible Ag14 nanoclusters for cancer cell imaging, Nanoscale, 7(2015), No. 44, p. 18464. doi: 10.1039/C5NR06421J
|
[42] |
T. Udayabhaskararao, M.S. Bootharaju, and T. Pradeep, Thiolate-protected Ag32 clusters: Mass spectral studies of composition and insights into the Ag−thiolate structure from NMR, Nanoscale, 5(2013), No. 19, p. 9404. doi: 10.1039/c3nr03463a
|
[43] |
I. Chakraborty, W. Kurashige, K. Kanehira, L. Gell, H. Häkkinen, Y. Negishi, and T. Pradeep, Ag44(SeR)30: A hollow cage silver cluster with selenolate protection, J. Phys. Chem. Lett., 4(2013), No. 19, p. 3351. doi: 10.1021/jz401879c
|
[44] |
J.F. Corbett, An historical review of the use of dye precursors in the formulation of commercial oxidation hair dyes, Dyes Pigm., 41(1999), No. 1-2, p. 127. doi: 10.1016/S0143-7208(98)00075-8
|
[45] |
Y. Du, H.L. Chen, R.Z. Chen, and N.P. Xu, Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts, Appl. Catal. A Gen., 277(2004), No. 1-2, p. 259. doi: 10.1016/j.apcata.2004.09.018
|
[46] |
Z.Y. Zhang, C.L. Shao, P. Zou, P. Zhang, M.Y. Zhang, J.B. Mu, Z.C. Guo, X.H. Li, C.H. Wang, and Y.C. Liu, In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol, Chem. Commun., 47(2011), No. 13, p. 3906. doi: 10.1039/c0cc05693f
|
[47] |
Y.W. Zhang, S. Liu, W.B. Lu, L. Wang, J.Q. Tian, and X.P. Sun, In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol, Catal. Sci. Technol., 1(2011), No. 7, art. No. 1142. doi: 10.1039/c1cy00205h
|
[48] |
J. Wang, X.B. Zhang, Z.L. Wang, L.M. Wang, W. Xing, and X. Liu, One-step and rapid synthesis of “clean” and monodisperse dendritic Pt nanoparticles and their high performance toward methanol oxidation and p-nitrophenol reduction, Nanoscale, 4(2012), No. 5, p. 1549. doi: 10.1039/c2nr11912a
|
[49] |
G.T. Fu, L.F. Ding, Y. Chen, J. Lin, Y.W. Tang, and T.H. Lu, Facile water-based synthesis and catalytic properties of platinum–gold alloy nanocubes, CrystEngComm, 16(2014), No. 9, p. 1606. doi: 10.1039/C3CE41848K
|
[50] |
S.K. Ghosh, M. Mandal, S. Kundu, S. Nath, and T. Pal, Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution, Appl. Catal. A Gen., 268(2004), No. 1-2, p. 61. doi: 10.1016/j.apcata.2004.03.017
|
[51] |
M. Raula, D. Maity, M.H. Rashid, and T.K. Mandal, In situ formation of chiral core–shell nanostructures with raspberry-like gold cores and dense organic shells using catechin and their catalytic application, J. Mater. Chem., 22(2012), No. 35, art. No. 18335. doi: 10.1039/c2jm32303f
|
[52] |
N. Sahiner, N. Karakoyun, D. Alpaslan, and N. Aktas, Biochar-embedded soft hydrogel and their use in ag nanoparticle preparation and reduction of 4-nitro phenol, Int. J. Polym. Mater. Polym. Biomater, 62(2013), No. 11, p. 590. doi: 10.1080/00914037.2013.769163
|
[53] |
M.H. Rashid, R.R. Bhattacharjee, A. Kotal, and T.K. Mandal, Synthesis of spongy gold nanocrystals with pronounced catalytic activities, Langmuir, 22(2006), No. 17, p. 7141.
|
[54] |
X. Guo, Q. Zhang, Y.H. Sun, Q. Zhao, and J. Yang, Lateral etching of core–shell Au@metal nanorods to metal-tipped Au nanorods with improved catalytic activity, ACS Nano, 6(2012), No. 2, p. 1165. doi: 10.1021/nn203793k
|