Cite this article as:

Research Article

Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags

+ Author Affiliations
  • Received: 4 June 2020Revised: 3 September 2020Accepted: 4 September 2020Available online: 5 September 2020
  • The effect of Al2O3 on the viscosity of the CaO-SiO2-Al2O3-8wt% MgO-1wt% Cr2O3 (CaO/SiO2=1.0, Al2O3=17-29wt%) slags was investigated in the present work. The results indicated that the viscosity of the slag increased gradually with the increasing of Al2O3 content within the range of 17 to 29wt%, due to the role of Al2O3 acting as a network former in polymerizing the aluminosilicate structure of the slag. The apparent activation energy of the slags increased from 180.85 to 210.23 kJ/mol with increasing the Al2O3 content from 17 to 29wt%, which was consistent with the variation of the critical temperature. It was indicated that the polymerization degree of the present slag was increased with the addition of Al2O3. The Iida’s model was applied to the prediction of the slag viscosity due to the existence of Cr2O3, and it was found that the calculated viscosity values fitted well with the measured ones when both of the temperature and Al2O3 content were at relatively low level in the present study.
  • 加载中
  •  

  • [1] Franco Mayanglambam and Mark Russell, Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni–P/fly ash and Ni–P/SiO2–Al2O3), Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2071-7
    [2] Jing Guo,Xing-run Chen,Shao-wei Han,Yan Yan, and Han-jie Guo, Evolution of plasticized MnO–Al2O3–SiO2-based nonmetallic inclusion in 18wt%Cr‒8wt%Ni stainless steel and its properties during soaking process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1945-z
    [3] Hai-yan Yu,Xiao-lin Pan,Yong-pan Tian, and Gan-feng Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1951-1
    [4] Guo-xing Ren,Song-wen Xiao,Cai-bin Liao, and Zhi-hong Liu, The activity coefficient of nickel oxide in SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623K, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2205-y
    [5] Xiao-guang Liu,Qiu-shuo Mao,Yue Jiang,Yan Li,Jia-lin Sun, and Fei-xue Huang, Preparation of Al2O3 SiO2 composite aerogels and their preliminary Cu2+ absorption properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2111-3
    [6] Rui Wang, Yan-ping Bao, Zhi-jie Yan, Da-zhao Li, and  Yan Kang, Comparison between the surface defects caused by Al2O3 and TiN inclusions in interstitial-free steel auto sheets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1722-z
    [7] Seyed Esmaiel Shakib, Ramin Raiszadeh, and  Jalil Vahdati-Khaki, A Self-propagating high-temperature synthesis process for the fabrication of Fe(Cr)-Al2O3 nanocomposite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1779-8
    [8] Qi-qiang Mou, Jian-li Li, Qiang Zeng, and  Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1822-9
    [9] S. M. A. Haghi, S. A. Sajjadi, and  A. Babakhani, In-situ fabrication of Al(Zn)-Al2O3 graded composite using the aluminothermic reaction during hot pressing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1632-5
    [10] Hui Xu, Gong-zhen Zhang, Wei Cui, Shu-bin Ren, Qian-jin Wang, and  Xuan-hui Qu, Effect of Al2O3sf addition on the friction and wear properties of (SiCp+Al2O3sf)/Al2024 composites fabricated by pressure infiltration, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1581-z
    [11] Saeid Mersagh Dezfuli, Ali Shanaghi, and  Saeid Baghshahi, Effect of Al2O3 and Y2O3 on the corrosion behavior of ZrO2-benzotriazole nanostructured coatings applied on AA2024 via a sol-gel method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1688-2
    [12] Chun-fa Liao, Yun-fen Jiao, Xu Wang, Bo-qing Cai, Qiang-chao Sun, and  Hao Tang, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1493-3
    [13] Jian-bin Zhu and  Hong Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1409-2
    [14] Liang Yang and  Guo-guang Cheng, Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1472-8
    [15] Mohammad Baghani and  Mahmood Aliofkhazraei, CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1524-0
    [16] Xin Lu, Takahiro Miki, and  Tetsuya Nagasaka, Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1375-8
    [17] Shang-hao Tong, Yong Li, Ming-wei Yan, Peng Jiang, Jia-jia Ma, and  Dan-dan Yue, In situ reaction mechanism of MgAlON in Al-Al2O3-MgO composites at 1700℃ under flowing N2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1496-0
    [18] Zuo-li Li, Jun Zhao, Jia-lin Sun, Feng Gong, and  Xiu-ying Ni, Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1533-z
    [19] Yi-fan Zhang, Zhen Ji, Ke Chen, Cheng-chang Jia, Shan-wu Yang, and  Meng-ya Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1398-1
    [20] Jian-fang Lü, Zhe-nan Jin, Hong-ying Yang, Lin-lin Tong, Guo-bao Chen, and  Fa-xin Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1459-5
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(242) PDF downloads(7) Cited by()

Proportional views

Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags

  • Corresponding authors:

    Ren-ze Xu    E-mail: xurenze2010@163.com

    Jian-liang Zhang    E-mail: zhang.jianliang@hotmail.com

  • 1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • 2. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

Abstract: The effect of Al2O3 on the viscosity of the CaO-SiO2-Al2O3-8wt% MgO-1wt% Cr2O3 (CaO/SiO2=1.0, Al2O3=17-29wt%) slags was investigated in the present work. The results indicated that the viscosity of the slag increased gradually with the increasing of Al2O3 content within the range of 17 to 29wt%, due to the role of Al2O3 acting as a network former in polymerizing the aluminosilicate structure of the slag. The apparent activation energy of the slags increased from 180.85 to 210.23 kJ/mol with increasing the Al2O3 content from 17 to 29wt%, which was consistent with the variation of the critical temperature. It was indicated that the polymerization degree of the present slag was increased with the addition of Al2O3. The Iida’s model was applied to the prediction of the slag viscosity due to the existence of Cr2O3, and it was found that the calculated viscosity values fitted well with the measured ones when both of the temperature and Al2O3 content were at relatively low level in the present study.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return