Cite this article as:

Research Article

The stress corrosion cracking behavior of high-strength mooring chain steel in SO2-polluted coastal atmosphere

+ Author Affiliations
  • Received: 26 June 2020Revised: 9 September 2020Accepted: 11 September 2020Available online: 12 September 2020
  • 21Cr2NiMo steel is widely used to stabilize offshore oil platforms, however, it suffers from stress corrosion cracking (SCC). Herein, we studied the SCC behavior of 21Cr2NiMo steel in SO2-polluted coastal atmospheres. Electrochemical tests revealed that the addition of SO2 increases the corrosion current. Rust characterization showed that the SO2 addition densities the corrosion products and promotes pitting. Furthermore, the slow strain rate tests demonstrated high susceptibility to SCC at high SO2 contents. Fracture morphologies revealed that the stress-corrosion cracks initiated at corrosion pits and the crack propagation showed transgranular and intergranular cracking modes. In conclusion, the SCC is mix-controlled by anodic dissolution and hydrogen embrittlement mechanisms.
  • 加载中
  •  

  • [1] Chao Gu,Wen-qi Liu,Jun-he Lian, and Yan-ping Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2223-9
    [2] Xing-hai Yang,Xiao-hua Chen,Shi-wei Pan,Zi-dong Wang,Kai-xuan Chen,Da-yong Li, and Jun-wei Qin, Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu−Nb addition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2159-0
    [3] En-dian Fan,Shi-qi Zhang,Dong-han Xie,Qi-yue Zhao,Xiao-gang Li, and Yun-hua Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2167-0
    [4] Yong Li, Min-dong Chen, Jian-kuan Li, Long-fei Song, Xin Zhang, and  Zhi-yong Liu, Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1626-3
    [5] Hui-bin Wu, Tao Wu, Gang Niu, Tao Li, Rui-yan Sun, and  Yang Gu, Effect of the frequency of high-angle grain boundaries on the corrosion performance of 5wt%Cr steel in a CO2 aqueous environment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1575-x
    [6] Xiao-ping Wang, Ti-chang Sun, Chao Chen, and  Jue Kou, Effects of Na2SO4 on iron and nickel reduction in a high-iron and low-nickel laterite ore, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1582-y
    [7] Dong-liang Li, Gui-qin Fu, Miao-yong Zhu, Qing Li, and  Cheng-xiang Yin, Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1576-9
    [8] Babak Shahriari, Reza Vafaei, Ehsan Mohammad Sharifi, and  Khosro Farmanesh, Aging behavior of a copper-bearing high-strength low-carbon steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1588-5
    [9] Gang Niu, Yin-li Chen, Hui-bin Wu, Xuan Wang, and  Di Tang, Corrosion behavior of high-strength spring steel for high-speed railway, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1599-2
    [10] Bing-wei Luo, Jie Zhou, Peng-peng Bai, Shu-qi Zheng, Teng An, and  Xiang-li Wen, Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2-H2O-CO2 system:products, reaction kinetics, and pitting sensitivity, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1447-9
    [11] Chong Tao, Lei Wang, and  Xiu Song, High-temperature frictional wear behavior of MCrAlY-based coatings deposited by atmosphere plasma spraying, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1399-0
    [12] Jia-xin Wen, Tian-bin Zhu, Zhi-peng Xie, Wen-bin Cao, and  Wei Liu, A strategy to obtain a high-density and high-strength zirconia ceramic via ceramic injection molding by the modification of oleic acid, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1455-9
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(765) PDF downloads(3) Cited by()

Proportional views

The stress corrosion cracking behavior of high-strength mooring chain steel in SO2-polluted coastal atmosphere

  • Corresponding authors:

    Zhi-yong Liu    E-mail: liuzhiyong7804@ustb.edu.cn

    Cui-wei Du    E-mail: dcw@ustb.edu.cn

  • 1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 10083, China
  • 2. Zhengmao Group Co., Ltd., Zhenjiang 212000, China

Abstract: 21Cr2NiMo steel is widely used to stabilize offshore oil platforms, however, it suffers from stress corrosion cracking (SCC). Herein, we studied the SCC behavior of 21Cr2NiMo steel in SO2-polluted coastal atmospheres. Electrochemical tests revealed that the addition of SO2 increases the corrosion current. Rust characterization showed that the SO2 addition densities the corrosion products and promotes pitting. Furthermore, the slow strain rate tests demonstrated high susceptibility to SCC at high SO2 contents. Fracture morphologies revealed that the stress-corrosion cracks initiated at corrosion pits and the crack propagation showed transgranular and intergranular cracking modes. In conclusion, the SCC is mix-controlled by anodic dissolution and hydrogen embrittlement mechanisms.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return