Cite this article as:

Research Article

Microstructure and tribological behavior of the nickel-coated-graphite reinforced Babbitt metal composite fabricated by selective laser melting

+ Author Affiliations
  • Received: 5 July 2020Revised: 13 September 2020Accepted: 14 September 2020Available online: 19 September 2020
  • For purpose of improving the properties of Babbitt alloys, Ni-coated-graphite reinforced Babbitt metal composite specimens were prepared by selective laser melting (SLM) process, and their microstructures, mechanical and tribological properties were studied using scanning electron microscope (SEM), shear test and dry-sliding wear test, respectively. The results show that most of NCGr particles distribute at boundaries of laser beads in the cross-section of the SLM composite specimens. Microcracks or microvoids form at boundaries of laser beads where NCGr particle accumulating. Both shearing strength and the friction coefficient of the SLM composite specimens decrease with increasing NCGr content. The shearing strength and the friction coefficient of the SLM composite sample with 6% NCGr decrease by around 20% and 33% compared with the NCGr-free sample. Friction mechanism changes from plastic shaping furrow to brittle cutting with increasing NCGr content. A practical Babbitt material with a lower friction coefficient and proper strength could be expected if the dispersion of the NCGr particles is controlled by choosing NCGr particles with thicker Ni layer and precisely controlling laser energy input during SLM process.
  • 加载中
  •  

  • [1] Ming Gao,Jin-tao Gao,Yan-ling Zhang, and Shu-feng Yang, Simulation on scrap melting behavior and carbon diffusion under natural convection, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-1997-0
    [2] Mahmood Razzaghi,Masoud Kasiri-Asgarani,Hamid Reza Bakhsheshi-Rad, and Hamid Ghayour, In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2072-6
    [3] De-cheng Kong,Chao-fang Dong,Xiao-qing Ni,Liang Zhang,Rui-xue Li,Xing He,Cheng Man, and Xiao-gang Li, Microstructure and mechanical properties of nickel-based superalloy fabricated by laser powder-bed fusion using recycled powders, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2147-4
    [4] Tapan Sarkar, Ajit Kumar Pramanick, Tapan Kumar Pal, and  Akshay Kumar Pramanick, Development of a new coated electrode with low nickel content for welding ductile iron and its response to austempering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1660-1
    [5] Li Fan, Hai-yan Chen, Yao-hua Dong, Li-hua Dong, and  Yan-sheng Yin, Wear and corrosion resistance of laser-cladded Fe-based composite coatings on AISI 4130 steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1619-2
    [6] Zeeshan Baig, Othman Mamat, Mazli Mustapha, Asad Mumtaz, Sadaqat Ali, and  Mansoor Sarfraz, Surfactant-decorated graphite nanoplatelets (GNPs) reinforced aluminum nanocomposites: sintering effects on hardness and wear, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1618-3
    [7] Moslem Tayyebi and Beitallah Eghbali, Microstructure and mechanical properties of SiC-particle-strengthening tri-metal Al/Cu/Ni composite produced by accumulative roll bonding process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1579-6
    [8] Hui Xu, Jian-hao Chen, Shu-bin Ren, Xin-bo He, and  Xuan-hui Qu, Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1592-9
    [9] Yong-zhong Zhang, Guo-hua Gu, Xiang-bin Wu, and  Kai-le Zhao, Selective depression behavior of guar gum on talc-type scheelite flotation, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1470-x
    [10] Li Zhang, Bao-lin Wu, and  Yu-lin Liu, Microstructure and mechanical properties of a hot-extruded Al-based composite reinforced with core-shell-structured Ti/Al3Ti, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1536-9
    [11] Gülşah Aktaş Çelik, Şeyda Polat, and  Ş. Hakan Atapek, Tribological behavior of CrN-coated Cr-Mo-V steels used as die materials, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1532-0
    [12] Hui-ping Duan, Xiao Liu, Xian-zhe Ran, Jia Li, and  Dong Liu, Mechanical properties and microstructure of 3D-printed high Co-Ni secondary hardening steel fabricated by laser melting deposition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1492-4
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(705) PDF downloads(2) Cited by()

Proportional views

Microstructure and tribological behavior of the nickel-coated-graphite reinforced Babbitt metal composite fabricated by selective laser melting

  • Corresponding author:

    Xing-ke Zhao    E-mail: xkzhao@ustb.edu.cn

  • School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract: For purpose of improving the properties of Babbitt alloys, Ni-coated-graphite reinforced Babbitt metal composite specimens were prepared by selective laser melting (SLM) process, and their microstructures, mechanical and tribological properties were studied using scanning electron microscope (SEM), shear test and dry-sliding wear test, respectively. The results show that most of NCGr particles distribute at boundaries of laser beads in the cross-section of the SLM composite specimens. Microcracks or microvoids form at boundaries of laser beads where NCGr particle accumulating. Both shearing strength and the friction coefficient of the SLM composite specimens decrease with increasing NCGr content. The shearing strength and the friction coefficient of the SLM composite sample with 6% NCGr decrease by around 20% and 33% compared with the NCGr-free sample. Friction mechanism changes from plastic shaping furrow to brittle cutting with increasing NCGr content. A practical Babbitt material with a lower friction coefficient and proper strength could be expected if the dispersion of the NCGr particles is controlled by choosing NCGr particles with thicker Ni layer and precisely controlling laser energy input during SLM process.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return