Cite this article as:

Research Article

Effects of Si/Al, Na/Al, and H2O/Na2O molar ratios on formaldehyde barrier properties of inorganic aluminosilicate coatings

+ Author Affiliations
  • Received: 27 July 2020Revised: 17 September 2020Accepted: 18 September 2020Available online: 19 September 2020
  • Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health. To obstruct formaldehyde release, inorganic aluminosilicate coatings prepared by combining metakaolin, silica fume, NaOH and H2O, were applied to the surfaces of wood-based panels. The Si/Al, Na/Al, and H2O/Na2O molar ratios of the coatings were regulated to investigate their effects on the structure and formaldehyde-resistant barrier properties of coatings. The results showed that as the Si/Al molar ratio increased from 1.6 to 2.2, the cracks present in the coatings gradually disappeared and the formaldehyde-resistance rates of the barrier increased. This value also increased as the Na/Al molar ratio increased from 0.9 to 1.2 due to the improvement of the degree of polymerization. As the H2O/Na2O molar ratio increased from 12 to 15, the thickness of the dry film decreased gradually and led to the reduction in the formaldehyde-resistance rate. When the Si/Al, Na/Al and H2O/Na2O molar ratio were 2.2, 1.2, and 12 respectively, the inorganic aluminosilicate coating showed the good performance as a formaldehyde-resistant barrier and its formaldehyde-resistance rate could reach up to 83.2%.
  • 加载中
  •  

  • [1] Franco Mayanglambam and Mark Russell, Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni–P/fly ash and Ni–P/SiO2–Al2O3), Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2071-7
    [2] Chen-yang Xu,Cui Wang,Ren-ze Xu,Jian-liang Zhang, and Ke-xin Jiao, Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2187-9
    [3] Xiao-guang Liu,Qiu-shuo Mao,Yue Jiang,Yan Li,Jia-lin Sun, and Fei-xue Huang, Preparation of Al2O3 SiO2 composite aerogels and their preliminary Cu2+ absorption properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2111-3
    [4] Hai-yan Yu,Xiao-lin Pan,Yong-pan Tian, and Gan-feng Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1951-1
    [5] Reza Beygi, Majid Zarezadeh Mehrizi, Hossein Mostaan, Mahdi Rafiei, and  Ahmadreza Abbasian, Synthesis of a NiTi2-AlNi-Al2O3 nanocomposite by mechanical alloying and heat treatment of Al-TiO2-NiO, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1743-7
    [6] Qi-qiang Mou, Jian-li Li, Qiang Zeng, and  Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1822-9
    [7] Min-min Sun, Jian-liang Zhang, Ke-jiang Li, Ke Guo, Zi-ming Wang, and  Chun-he Jiang, Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1846-1
    [8] Xiao-ping Wang, Ti-chang Sun, Chao Chen, and  Jue Kou, Effects of Na2SO4 on iron and nickel reduction in a high-iron and low-nickel laterite ore, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1582-y
    [9] Jing Guo, Shu-sen Cheng, Han-jie Guo, and  Ya-guang Mei, Novel mechanism for the modification of Al2O3-based inclusions in ultra-low carbon Al-killed steel considering the effects of magnesium and calcium, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1571-1
    [10] Hui Xu, Gong-zhen Zhang, Wei Cui, Shu-bin Ren, Qian-jin Wang, and  Xuan-hui Qu, Effect of Al2O3sf addition on the friction and wear properties of (SiCp+Al2O3sf)/Al2024 composites fabricated by pressure infiltration, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1581-z
    [11] Saeid Mersagh Dezfuli, Ali Shanaghi, and  Saeid Baghshahi, Effect of Al2O3 and Y2O3 on the corrosion behavior of ZrO2-benzotriazole nanostructured coatings applied on AA2024 via a sol-gel method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1688-2
    [12] Zhi-yu Chang, Ping Wang, Jian-liang Zhang, Ke-xin Jiao, Yue-qiang Zhang, and  Zheng-jian Liu, Effect of CO2 and H2O on gasification dissolution and deep reaction of coke, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1694-4
    [13] Jian-bin Zhu and  Hong Yan, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1409-2
    [14] Mohammad Baghani, Mahmood Aliofkhazraei, and  Mehdi Askari, Cu-Zn-Al2O3 nanocomposites:study of microstructure,corrosion,and wear properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1427-0
    [15] Mohammad Baghani and  Mahmood Aliofkhazraei, CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1524-0
    [16] Zuo-li Li, Jun Zhao, Jia-lin Sun, Feng Gong, and  Xiu-ying Ni, Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1533-z
    [17] Hai-xia Qin, Yong Li, Li-xiong Bai, Meng-long Long, Wen-dong Xue, and  Jun-hong Chen, Reaction mechanism for in-situ β-SiAlON formation in Fe3Si-Si3N4-Al2O3 composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1411-8
    [18] Yi-fan Zhang, Zhen Ji, Ke Chen, Cheng-chang Jia, Shan-wu Yang, and  Meng-ya Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1398-1
    [19] Xiu-ying Ni, Jun Zhao, Jia-lin Sun, Feng Gong, and  Zuo-li Li, Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1466-6
    [20] Chun-fa Liao, Yun-fen Jiao, Xu Wang, Bo-qing Cai, Qiang-chao Sun, and  Hao Tang, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1493-3
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(217) PDF downloads(1) Cited by()

Proportional views

Effects of Si/Al, Na/Al, and H2O/Na2O molar ratios on formaldehyde barrier properties of inorganic aluminosilicate coatings

  • Corresponding authors:

    Jian-lei Kuang    E-mail: jlkuang@ustb.edu.cn

    Wen-bin Cao    E-mail: wbcao@ustb.edu.cn

  • Department of Inorganic Nonmetallic Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract: Wood-based panels containing urea-formaldehyde resin result in the long-term release of formaldehyde and threaten human health. To obstruct formaldehyde release, inorganic aluminosilicate coatings prepared by combining metakaolin, silica fume, NaOH and H2O, were applied to the surfaces of wood-based panels. The Si/Al, Na/Al, and H2O/Na2O molar ratios of the coatings were regulated to investigate their effects on the structure and formaldehyde-resistant barrier properties of coatings. The results showed that as the Si/Al molar ratio increased from 1.6 to 2.2, the cracks present in the coatings gradually disappeared and the formaldehyde-resistance rates of the barrier increased. This value also increased as the Na/Al molar ratio increased from 0.9 to 1.2 due to the improvement of the degree of polymerization. As the H2O/Na2O molar ratio increased from 12 to 15, the thickness of the dry film decreased gradually and led to the reduction in the formaldehyde-resistance rate. When the Si/Al, Na/Al and H2O/Na2O molar ratio were 2.2, 1.2, and 12 respectively, the inorganic aluminosilicate coating showed the good performance as a formaldehyde-resistant barrier and its formaldehyde-resistance rate could reach up to 83.2%.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return