Cite this article as:

Research Article

Effect of cathodic potential on stress corrosion cracking behavior of 21Cr2NiMo steel in simulated seawater

+ Author Affiliations
  • Received: 22 May 2020Revised: 17 September 2020Accepted: 21 September 2020Available online: 25 September 2020
  • This study aims at providing systematically insights into the impact of cathodic polarization on the stress corrosion cracking (SCC) behavior of 21Cr2NiMo steel. Slow stress tensile test demonstrated that 21Cr2NiMo steel is highly sensitive to hydrogen embrittlement at strong cathodic polarization. The lowest SCC susceptibility is presented at -775 mVSCE whereas the SCC susceptibility increased remarkably below -950 mVSCE. SEM and EBSD revealed that cathodic potential decline causes a transition in fracture path from transgranular mode to intergranular mode. The intergranular mode transforms from bainite boundaries separation to prior austenitic grain boundaries separation when more cathodically polarized. Furthermore, corrosion pits promoted the nucleation of SCC cracks. In conclusion, the SCC mechanism transforms from the coexistence of hydrogen embrittlement mechanism and anodic dissolution mechanism to typical hydrogen embrittlement mechanism with applied potential decreases.
  • 加载中
  •  

  • [1] Wei-ning Shi,Shu-feng Yang, and Jing-she Li, Effect of nonmetallic inclusions on localized corrosion of spring steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2018-z
    [2] En-dian Fan,Shi-qi Zhang,Dong-han Xie,Qi-yue Zhao,Xiao-gang Li, and Yun-hua Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2167-0
    [3] Xin Chen, Mei-feng Cai, Jian-chuan Li, and  Wen-hui Tan, Theoretical analysis of JMC effect on stress wave transmission and reflection, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1676-6
    [4] Wei Li, Nan Wang, Gui-qin Fu, Man-sheng Chu, and  Miao-yong Zhu, Effect of Cr2O3 addition on the oxidation induration mechanism of Hongge vanadium titanomagnetite pellets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1583-x
    [5] Saeid Mersagh Dezfuli, Ali Shanaghi, and  Saeid Baghshahi, Effect of Al2O3 and Y2O3 on the corrosion behavior of ZrO2-benzotriazole nanostructured coatings applied on AA2024 via a sol-gel method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1688-2
    [6] Hui-bin Wu, Tao Wu, Gang Niu, Tao Li, Rui-yan Sun, and  Yang Gu, Effect of the frequency of high-angle grain boundaries on the corrosion performance of 5wt%Cr steel in a CO2 aqueous environment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1575-x
    [7] Yong Li, Min-dong Chen, Jian-kuan Li, Long-fei Song, Xin Zhang, and  Zhi-yong Liu, Flow-accelerated corrosion behavior of 13Cr stainless steel in a wet gas environment containing CO2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1626-3
    [8] Dong-liang Li, Gui-qin Fu, Miao-yong Zhu, Qing Li, and  Cheng-xiang Yin, Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1576-9
    [9] Behzad Avishan, Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1490-6
    [10] Se-fei Yang, Ying Wen, Pan Yi, Kui Xiao, and  Chao-fang Dong, Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1518-y
    [11] Jin-jie Shi and  Jing Ming, Influence of mill scale and rust layer on the corrosion resistance of low-alloy steel in simulated concrete pore solution, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1379-4
    [12] Bing-wei Luo, Jie Zhou, Peng-peng Bai, Shu-qi Zheng, Teng An, and  Xiang-li Wen, Comparative study on the corrosion behavior of X52, 3Cr, and 13Cr steel in an O2-H2O-CO2 system:products, reaction kinetics, and pitting sensitivity, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1447-9
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(678) PDF downloads(3) Cited by()

Proportional views

Effect of cathodic potential on stress corrosion cracking behavior of 21Cr2NiMo steel in simulated seawater

  • Corresponding authors:

    Zhi-yong Liu    E-mail: liuzhiyong7804@ustb.edu.cn

    Cui-wei Du    E-mail: dcw@ustb.edu.cn

  • 1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 10083, China
  • 2. Zhengmao Group Co., Ltd., Zhenjiang 212000, China

Abstract: This study aims at providing systematically insights into the impact of cathodic polarization on the stress corrosion cracking (SCC) behavior of 21Cr2NiMo steel. Slow stress tensile test demonstrated that 21Cr2NiMo steel is highly sensitive to hydrogen embrittlement at strong cathodic polarization. The lowest SCC susceptibility is presented at -775 mVSCE whereas the SCC susceptibility increased remarkably below -950 mVSCE. SEM and EBSD revealed that cathodic potential decline causes a transition in fracture path from transgranular mode to intergranular mode. The intergranular mode transforms from bainite boundaries separation to prior austenitic grain boundaries separation when more cathodically polarized. Furthermore, corrosion pits promoted the nucleation of SCC cracks. In conclusion, the SCC mechanism transforms from the coexistence of hydrogen embrittlement mechanism and anodic dissolution mechanism to typical hydrogen embrittlement mechanism with applied potential decreases.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return