Cite this article as:

Research Article

Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion

+ Author Affiliations
  • Received: 29 March 2020Revised: 17 September 2020Accepted: 21 September 2020Available online: 25 September 2020
  • Multicomponent Al20Cr20Fe25Ni25Mn10 alloys were synthesized using spark plasma sintering at temperatures (800 °C, 900 °C and 1000 °C) and holding times (4, 8 and 12 minutes), with aim to develop a high entropy alloy (HEA). The characteristics of spark plasma synthesized (SPSed) alloys were experimental explored through investigation of microstructures, microhardness and corrosion using scanning electron microscope coupled with energy dispersive spectroscopy, Vickers microhardness tester and potentiodynamic polarization respectively. Also, X-ray diffractometry characterization was employed to identify the phases formed on the alloys developed. The EDS results revealed that the alloys consist of elements selected in this work irrespective of varying the sintering parameters. Also, the XRD, EDS and SEM collectively provided evidence that the fabricated alloys are characterized by globular microstructures exhibiting FCC phase formed on a basis of solid solution mechanism; this implies that SPSed alloy shows features of HEAs. The alloy produced at 1000 °C and holding time 12 minutes portrayed an optimal microhardness of 447.97 HV, however, this microhardness decreased to 329.47 HV after heat treatment. The same alloy showed outstanding corrosion resistance performance. Increase in temperature resulted in Al20Cr20Fe25Ni25Mn10 alloy with superior density, microhardness and corrosion resistance over other alloys developed at different parameters.
  • 加载中
  •  

  • [1] Yunlong Wang,Yinli Chen, and Wei Yu, Effect of Cr/Mn segregation on pearlite-martensite banded structure of high carbon bearing steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2035-y
    [2] Chun-duo Dai,Yu Fu,Jia-xiang Guo, and Cui-wei Du, Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2149-2
    [3] Yong-jin Wang,Shuai Zhao,Ren-bo Song, and Bin Hu, Revealing hot ductility behavior of a Fe-0.3C-9Mn-2Al medium Mn steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2206-x
    [4] Yuan Li,Li-na Cheng,Wen-kang Miao,Chun-xiao Wang,De-zhi Kuang, and Shu-min Han, Nd–Mg–Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1880-z
    [5] Cheng-bin Wei,Xing-hao Du,Yi-ping Lu,Hui Jiang,Ting-ju Li, and Tong-min Wang, Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2042-z
    [6] Özgü Bayrak,Hojjat Ghahramanzadeh Asl, and Ayşe Ak, Protein adsorption, cell viability and corrosion properties of Ti6Al4V alloy treated by plasma oxidation and anodic oxidation, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2020-5
    [7] Hui-min Xia,Lan Zhang,Yong-chao Zhu,Na Li,Yu-qi Sun,Ji-dong Zhang, and Hui-zhong Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2009-0
    [8] Tian-shun Dong,Ming Liu,Yang Feng,Guo-lu Li, and Xiao-bing Li, Microstructure and properties of a wear resistant Al–25Si–4Cu–1Mg coating prepared by supersonic plasma spraying, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1950-2
    [9] Gurmail Singh,Niraj Bala, and Vikas Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC (N) coatings on ASTM-SA213-T22 steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1946-y
    [10] C. D. Gómez-Esparza, R. Peréz-Bustamante, J. M. Alvarado-Orozco, J. Muñoz-Saldaña, R. Martínez-Sánchez, J. M. Olivares-Ramírez, and  A. Duarte-Moller, Microstructural evaluation and nanohardness of an AlCoCuCrFeNiTi high-entropy alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1771-3
    [11] Renuprava Dalai, Siddhartha Das, and  Karabi Das, Relationship between the microstructure and properties of thermomechanically processed Fe-17Mn and Fe-17Mn-3Al steels, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1710-3
    [12] Seyed Esmaiel Shakib, Ramin Raiszadeh, and  Jalil Vahdati-Khaki, A Self-propagating high-temperature synthesis process for the fabrication of Fe(Cr)-Al2O3 nanocomposite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1779-8
    [13] Hang-qi Feng, Zhi-bo Yang, Ye-tong Bai, Li Zhang, and  Yu-lin Liu, Effect of Cr content and cooling rate on the primary phase of Al-2.5Mn alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1862-1
    [14] Shi-kai Wu, Ye Pan, Ning Wang, Tao Lu, and  Wei-ji Dai, Azo dye degradation behavior of AlFeMnTiM (M=Cr, Co, Ni) high-entropy alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1716-x
    [15] Hui Xu, Jian-hao Chen, Shu-bin Ren, Xin-bo He, and  Xuan-hui Qu, Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1592-9
    [16] Sreejith J and  S. Ilangovan, Optimization of wear parameters of binary Al-25Zn and Al-3Cu alloys using design of experiments, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1701-9
    [17] Hao-yi Chi, Zhen-gui Yuan, Yan Wang, Min Zuo, De-gang Zhao, and  Hao-ran Geng, Glass-forming ability, microhardness, corrosion resistance, and dealloying treatment of Mg60-xCu40Ndx alloy ribbons, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1454-x
    [18] I. Narasimha Murthy and  J. Babu Rao, Evaluation of the microstructure, secondary dendrite arm spacing, and mechanical properties of Al-Si alloy castings made in sand and Fe-Cr slag molds, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1462-x
    [19] V. V. Ravikumar and  S. Kumaran, Improved strength and ductility of high alloy containing Al-12Zn-3Mg-2.5Cu alloy by combining non-isothermal step rolling and cold rolling, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1393-6
    [20] Lin-zhi Wang, Ying Liu, Jiao-jiao Wu, and  Xi Zhang, Mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1440-3
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(174) PDF downloads(6) Cited by()

Proportional views

Parametric study of spark plasma sintering of Al20Cr20Fe25Ni25Mn10 high entropy alloy with improved microhardness and corrosion

  • Corresponding author:

    Andries Mthisi    E-mail: Andriesmthisi@gmail.com

  • Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria, South Africa

Abstract: Multicomponent Al20Cr20Fe25Ni25Mn10 alloys were synthesized using spark plasma sintering at temperatures (800 °C, 900 °C and 1000 °C) and holding times (4, 8 and 12 minutes), with aim to develop a high entropy alloy (HEA). The characteristics of spark plasma synthesized (SPSed) alloys were experimental explored through investigation of microstructures, microhardness and corrosion using scanning electron microscope coupled with energy dispersive spectroscopy, Vickers microhardness tester and potentiodynamic polarization respectively. Also, X-ray diffractometry characterization was employed to identify the phases formed on the alloys developed. The EDS results revealed that the alloys consist of elements selected in this work irrespective of varying the sintering parameters. Also, the XRD, EDS and SEM collectively provided evidence that the fabricated alloys are characterized by globular microstructures exhibiting FCC phase formed on a basis of solid solution mechanism; this implies that SPSed alloy shows features of HEAs. The alloy produced at 1000 °C and holding time 12 minutes portrayed an optimal microhardness of 447.97 HV, however, this microhardness decreased to 329.47 HV after heat treatment. The same alloy showed outstanding corrosion resistance performance. Increase in temperature resulted in Al20Cr20Fe25Ni25Mn10 alloy with superior density, microhardness and corrosion resistance over other alloys developed at different parameters.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return