Cite this article as:

Research Article

The activity coefficient of nickel oxide in SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623K

+ Author Affiliations
  • Received: 18 May 2020Revised: 28 September 2020Accepted: 30 September 2020Available online: 1 October 2020
  • As a part of the fundamental study related to the reduction smelting of both spent lithium-ion batteries and polymetallic sea nodules based on MnO-SiO2-based slags, the activity coefficient of nickel oxide in SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623 K was investigated with controlled oxygen partial pressure of 10-7, 10-6, and 10-5 Pa. The results show that the solubility of nickel oxide in the slags increased with increasing the oxygen partial pressure. The nickel in both MnO-SiO2 slag and MnO-SiO2-Al2O3 slag existed as NiO under experimental conditions. The addition of Al2O3 in the MnO-SiO2 slag decreased the dissolution of Ni in the slag, and increased the activity coefficient of NiO. Furthermore, the activity coefficient of NiO, referred to solid NiO, can be calculated as: γNiO=8.58(wt% NiO in slag) + 3.18 (SiO2 saturated MnO-SiO2 slag, 1623K);γNiO=11.06(wt% NiO in slag) + 4.07 (Al2O3 saturated MnO-SiO2-Al2O3 slag, 1623K).
  • 加载中
  •  

  • [1] Hai-yan Yu,Xiao-lin Pan,Yong-pan Tian, and Gan-feng Tu, Mineral transition and formation mechanism of calcium aluminate compounds in CaO−Al2O3−Na2O system during high-temperature sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1951-1
    [2] Chen-yang Xu,Cui Wang,Ren-ze Xu,Jian-liang Zhang, and Ke-xin Jiao, Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2187-9
    [3] Jing Guo,Xing-run Chen,Shao-wei Han,Yan Yan, and Han-jie Guo, Evolution of plasticized MnO–Al2O3–SiO2-based nonmetallic inclusion in 18wt%Cr‒8wt%Ni stainless steel and its properties during soaking process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1945-z
    [4] Franco Mayanglambam and Mark Russell, Reusing oxide-based pulverised fly ash and medical waste particles to develop electroless nickel composite coatings (Ni–P/fly ash and Ni–P/SiO2–Al2O3), Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2071-7
    [5] Xiao-guang Liu,Qiu-shuo Mao,Yue Jiang,Yan Li,Jia-lin Sun, and Fei-xue Huang, Preparation of Al2O3 SiO2 composite aerogels and their preliminary Cu2+ absorption properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2111-3
    [6] Seyed Esmaiel Shakib, Ramin Raiszadeh, and  Jalil Vahdati-Khaki, A Self-propagating high-temperature synthesis process for the fabrication of Fe(Cr)-Al2O3 nanocomposite, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1779-8
    [7] Reza Beygi, Majid Zarezadeh Mehrizi, Hossein Mostaan, Mahdi Rafiei, and  Ahmadreza Abbasian, Synthesis of a NiTi2-AlNi-Al2O3 nanocomposite by mechanical alloying and heat treatment of Al-TiO2-NiO, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1743-7
    [8] Qi-qiang Mou, Jian-li Li, Qiang Zeng, and  Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1822-9
    [9] S. M. A. Haghi, S. A. Sajjadi, and  A. Babakhani, In-situ fabrication of Al(Zn)-Al2O3 graded composite using the aluminothermic reaction during hot pressing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1632-5
    [10] Saeid Mersagh Dezfuli, Ali Shanaghi, and  Saeid Baghshahi, Effect of Al2O3 and Y2O3 on the corrosion behavior of ZrO2-benzotriazole nanostructured coatings applied on AA2024 via a sol-gel method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1688-2
    [11] Sheng-chao Duan, Chuang Li, Han-jie Guo, Jing Guo, Shao-wei Han, and  Wen-sheng Yang, Investigation of the kinetic mechanism of the demanganization reaction between carbon-saturated liquid iron and CaF2-CaO-SiO2-based slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1584-9
    [12] Song Chen, Zhen Sun, and  De-gui Zhu, Mineral-phase evolution and sintering behavior of MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) glass-ceramics by low-temperature liquid-phase sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1655-y
    [13] Ying Xu, Zhi-peng Yuan, Li-guang Zhu, Yi-hua Han, and  Xing-juan Wang, Shear-thinning behavior of the CaO-SiO2-CaF2-Si3N4 system mold flux and its practical application, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1500-8
    [14] Liang Yang and  Guo-guang Cheng, Characteristics of Al2O3, MnS, and TiN inclusions in the remelting process of bearing steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1472-8
    [15] Mohammad Baghani and  Mahmood Aliofkhazraei, CuCrW(Al2O3) nanocomposite:mechanical alloying, microstructure, and tribological properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1524-0
    [16] Zuo-li Li, Jun Zhao, Jia-lin Sun, Feng Gong, and  Xiu-ying Ni, Reinforcing effect of graphene on the mechanical properties of Al2O3/TiC ceramics, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1533-z
    [17] Yi-fan Zhang, Zhen Ji, Ke Chen, Cheng-chang Jia, Shan-wu Yang, and  Meng-ya Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1398-1
    [18] Peng Zhou, Jun-hong Chen, Meng Liu, Peng Jiang, Bin Li, and  Xin-mei Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2-18 GHz range, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1464-8
    [19] Xin Lu, Takahiro Miki, and  Tetsuya Nagasaka, Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1375-8
    [20] Jian-fang Lü, Zhe-nan Jin, Hong-ying Yang, Lin-lin Tong, Guo-bao Chen, and  Fa-xin Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1459-5
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(152) PDF downloads(16) Cited by()

Proportional views

The activity coefficient of nickel oxide in SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623K

  • Corresponding authors:

    Song-wen Xiao    E-mail: swinxiao@126.com

    Zhi-hong Liu    E-mail: zhliu@csu.edu.cn

  • 1. School of Metallurgy and Environment, Central South University, Changsha 410083, China
  • 2. Changsha Research Institute of Mining & Metallurgy CO., Ltd, Changsha 410012, China

Abstract: As a part of the fundamental study related to the reduction smelting of both spent lithium-ion batteries and polymetallic sea nodules based on MnO-SiO2-based slags, the activity coefficient of nickel oxide in SiO2 saturated MnO-SiO2 slag and Al2O3 saturated MnO-SiO2-Al2O3 slag at 1623 K was investigated with controlled oxygen partial pressure of 10-7, 10-6, and 10-5 Pa. The results show that the solubility of nickel oxide in the slags increased with increasing the oxygen partial pressure. The nickel in both MnO-SiO2 slag and MnO-SiO2-Al2O3 slag existed as NiO under experimental conditions. The addition of Al2O3 in the MnO-SiO2 slag decreased the dissolution of Ni in the slag, and increased the activity coefficient of NiO. Furthermore, the activity coefficient of NiO, referred to solid NiO, can be calculated as: γNiO=8.58(wt% NiO in slag) + 3.18 (SiO2 saturated MnO-SiO2 slag, 1623K);γNiO=11.06(wt% NiO in slag) + 4.07 (Al2O3 saturated MnO-SiO2-Al2O3 slag, 1623K).

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return