Cite this article as:

Research Article

Special variation of infiltration-growth processed bulk YBCO fabricated using new liquid source: Ba3Cu5O8 (1:1.3) and YbBa2Cu3Oy

+ Author Affiliations
  • Received: 13 August 2020Revised: 15 October 2020Accepted: 19 October 2020Available online: 20 October 2020
  • The utilization of novel materials, high Tsuperconductors in particular, is essential in order to pursue the United Nations Sustainable Goals as well as the increasing worldwide demand for clean and carbon-free electric power technologies. Superconducting magnets have proven to be beneficial in several real-life applications such as transportation, energy production, MRI, drug delivery system etc. To achieve high performance, it is crucial to develop uniform large-grain infiltration-growth processed bulk YBa2Cu3Oy (Y-123) super-magnets. In this paper, we are reporting the magnetic and microstructural properties of large-grain top-seeded infiltration growth processed Y-123 pellet of 20 mm in diameter and 6 mm in height, produced utilizing the liquid Yb-123+Ba3Cu5O8 as liquid source. All samples cut at the top of the bulk have a sharp superconducting transition (~ 1 K wide) with the onset Taround 90 K. On the other hand, in the samples cut from the bottom surface, the onset Tvalues slightly decreased to values between 88 K and 90 K, still with a sharp superconducting transition. The top and bottom samples exhibited the highest remnant value of Jc at 77KH//c-axis of 50 kA/cm2 and 55 kA/cm2, respectively. The remnant Jc and irreversibility field values significantly fluctuated, being quite low in some bottom samples. Scanning electron microscopy (SEM) identified nanometer-size Y-211 secondary phase particles dispersed in the Y-123 matrix. The energy dispersive spectroscopy (EDS) clarified that the decreased critical temperature (Tc) and critical current density (Jc) for the bottom samples were due to liquid phase dispersion within Y-123 phase. 

  • 加载中
  •  

  • [1] Jie Luo,Xin Li,Fu-jie Zhang,Song Chen, and Ding Ren, 

    Sintering of monoclinic-SrAl2Si2Oceramics and their immobilization of Sr

    Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2056-6
    [2] Chen-yang Xu,Cui Wang,Ren-ze Xu,Jian-liang Zhang, and Ke-xin Jiao, Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2187-9
    [3] Jing Guo,Xing-run Chen,Shao-wei Han,Yan Yan, and Han-jie Guo, Evolution of plasticized MnO–Al2O3–SiO2-based nonmetallic inclusion in 18wt%Cr‒8wt%Ni stainless steel and its properties during soaking process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1945-z
    [4] Xiao-guang Liu,Qiu-shuo Mao,Yue Jiang,Yan Li,Jia-lin Sun, and Fei-xue Huang, Preparation of Al2O3 SiO2 composite aerogels and their preliminary Cu2+ absorption properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2111-3
    [5] Shu-mei Chen,Chun-fa Liao,Jue-yuan Lin,Bo-qing Cai,Xu Wang, and Yun-fen Jiao, Erratum to: Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1938-y
    [6] Qi-qiang Mou, Jian-li Li, Qiang Zeng, and  Hang-yu Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO-SiO2-MgO-Al2O3-Cr2O3 system, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1822-9
    [7] Betül Kafkaslıoğlu Yıldız, Hüseyin Yılmaz, and  Yahya Kemal Tür, Influence of nickel addition on the microstructure and mechanical properties of Al2O3-5vol%ZrO2 ceramic composites prepared via precipitation method, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1792-y
    [8] Shu-mei Chen, Chun-fa Liao, Jue-yuan Lin, Bo-qing Cai, Xu Wang, and  Yun-fen Jiao, Electrical conductivity of molten LiF-DyF3-Dy2O3-Cu2O system for Dy-Cu intermediate alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-019-1775-z
    [9] M. H. Farshidi, M. Rifai, and  H. Miyamoto, Microstructure evolution of a recycled Al-Fe-Si-Cu alloy processed by tube channel pressing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1668-6
    [10] You Zhou, Yu-he Zhang, Jun-sheng Ma, Ming-peng Yu, and  Hong Qiu, Structural and electrical properties of HCl-polyaniline-Ag composites synthesized by polymerization using Ag-coated (NH4)2S2O8 powder, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1686-4
    [11] S. M. A. Haghi, S. A. Sajjadi, and  A. Babakhani, In-situ fabrication of Al(Zn)-Al2O3 graded composite using the aluminothermic reaction during hot pressing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1632-5
    [12] Sreejith J and  S. Ilangovan, Optimization of wear parameters of binary Al-25Zn and Al-3Cu alloys using design of experiments, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1701-9
    [13] Song Chen, Zhen Sun, and  De-gui Zhu, Mineral-phase evolution and sintering behavior of MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) glass-ceramics by low-temperature liquid-phase sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1655-y
    [14] Hui Xu, Gong-zhen Zhang, Wei Cui, Shu-bin Ren, Qian-jin Wang, and  Xuan-hui Qu, Effect of Al2O3sf addition on the friction and wear properties of (SiCp+Al2O3sf)/Al2024 composites fabricated by pressure infiltration, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1581-z
    [15] Chun-fa Liao, Yun-fen Jiao, Xu Wang, Bo-qing Cai, Qiang-chao Sun, and  Hao Tang, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1493-3
    [16] Peng Jiang, Guo-xiang Yin, Ming-wei Yan, Jia-lin Sun, Bin Li, and  Yong Li, A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase:synthesis and physical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1412-7
    [17] Hai-xia Qin, Yong Li, Li-xiong Bai, Meng-long Long, Wen-dong Xue, and  Jun-hong Chen, Reaction mechanism for in-situ β-SiAlON formation in Fe3Si-Si3N4-Al2O3 composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1411-8
    [18] Yi-fan Zhang, Zhen Ji, Ke Chen, Cheng-chang Jia, Shan-wu Yang, and  Meng-ya Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1398-1
    [19] K. Sanesh, S. Shiam Sunder, and  N. Radhika, Effect of reinforcement content on the adhesive wear behavior of Cu10Sn5Ni/Si3N4 composites produced by stir casting, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1495-1
    [20] Mohammad Baghani, Mahmood Aliofkhazraei, and  Mehdi Askari, Cu-Zn-Al2O3 nanocomposites:study of microstructure,corrosion,and wear properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1427-0
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(270) PDF downloads(18) Cited by()

Proportional views

Special variation of infiltration-growth processed bulk YBCO fabricated using new liquid source: Ba3Cu5O8 (1:1.3) and YbBa2Cu3Oy

  • Corresponding author:

    Miryala Sushma    E-mail: sushmafeb15@gmail.com

  • Superconducting Material Laboratory, Department of Material Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8546, Japan

Abstract: 

The utilization of novel materials, high Tsuperconductors in particular, is essential in order to pursue the United Nations Sustainable Goals as well as the increasing worldwide demand for clean and carbon-free electric power technologies. Superconducting magnets have proven to be beneficial in several real-life applications such as transportation, energy production, MRI, drug delivery system etc. To achieve high performance, it is crucial to develop uniform large-grain infiltration-growth processed bulk YBa2Cu3Oy (Y-123) super-magnets. In this paper, we are reporting the magnetic and microstructural properties of large-grain top-seeded infiltration growth processed Y-123 pellet of 20 mm in diameter and 6 mm in height, produced utilizing the liquid Yb-123+Ba3Cu5O8 as liquid source. All samples cut at the top of the bulk have a sharp superconducting transition (~ 1 K wide) with the onset Taround 90 K. On the other hand, in the samples cut from the bottom surface, the onset Tvalues slightly decreased to values between 88 K and 90 K, still with a sharp superconducting transition. The top and bottom samples exhibited the highest remnant value of Jc at 77KH//c-axis of 50 kA/cm2 and 55 kA/cm2, respectively. The remnant Jc and irreversibility field values significantly fluctuated, being quite low in some bottom samples. Scanning electron microscopy (SEM) identified nanometer-size Y-211 secondary phase particles dispersed in the Y-123 matrix. The energy dispersive spectroscopy (EDS) clarified that the decreased critical temperature (Tc) and critical current density (Jc) for the bottom samples were due to liquid phase dispersion within Y-123 phase. 

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return