Sheng Liu, Qing Yuan, Yutong Sima, Chenxi Liu, Fang Han, and Wenwei Qiao, Wear behavior of Zn–38Al–3.5Cu–1.2Mg/SiCp composite under different stabilization treatments, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1270-1279. https://doi.org/10.1007/s12613-020-2217-7
Cite this article as:
Sheng Liu, Qing Yuan, Yutong Sima, Chenxi Liu, Fang Han, and Wenwei Qiao, Wear behavior of Zn–38Al–3.5Cu–1.2Mg/SiCp composite under different stabilization treatments, Int. J. Miner. Metall. Mater., 29(2022), No. 6, pp. 1270-1279. https://doi.org/10.1007/s12613-020-2217-7
Research Article

Wear behavior of Zn–38Al–3.5Cu–1.2Mg/SiCp composite under different stabilization treatments

+ Author Affiliations
  • Corresponding author:

    Qing Yuan    E-mail: yuanqing@wust.edu.cn

  • Received: 30 July 2020Revised: 23 October 2020Accepted: 2 November 2020Available online: 4 November 2020
  • A Zn–38Al–3.5Cu–1.2Mg composite reinforced with nano-SiCp was fabricated via stirring-assisted ultrasonic vibration. To improve the abrasive resistance of the Zn–38Al–3.5Cu–1.2Mg/SiCp composite, several stabilization treatments with distinct solid solutions and aging temperatures were designed. The results indicated that the optimal stabilization treatment for the Zn–38Al–3.5Cu–1.2Mg/SiCp composite comprised solution treatment at 380°C for 6 h and aging at 170°C for 48 h. The stabilization treatment led to the formation of dispersive and homogeneous nano-SiCp. During the friction wear condition, the nano-SiCp limited the microstructure evolution from the hard α(Al,Zn) phase to the soft β(Al,Zn) phase. Moreover, the increased amount of nano-SiCp improved the grain dimension and contributed to the composite abrasive resistance. Furthermore, the stabilization treatment suppressed the crack initiation and propagation in the friction wear process, thereby improving the abrasive resistance of the Zn–38Al–3.5Cu–1.2Mg/SiCp composite.
  • loading
  • [1]
    Z. Azakli and T. Savaşkan, An examination of friction and sliding wear properties of Zn−40Al−2Cu−2Si alloy in case of oil cut off, Tribol. Int., 41(2008), 1, p. 9. doi: 10.1016/j.triboint.2007.04.002
    [2]
    S. Temel, A.M. Reza, and O.T. Hasan, Tribological properties of Zn−25Al−3Cu−1Si alloy, Tribol. Int., 81(2015), p. 105. doi: 10.1016/j.triboint.2014.08.014
    [3]
    T. Liu, N.C. Si, G.L. Liu, R. Zhang, and C.Y. Qi, Effects of Si addition on microstructure, mechanical and thermal fatigue properties of Zn−38Al−2.5Cu alloys, Trans. Nonferrous Met. Soc. China, 26(2016), No. 7, p. 1775. doi: 10.1016/S1003-6326(16)64290-5
    [4]
    S. Liu, Q. Yuan, Y.Q. Gong, G. Xu, and W.W. Qiao, Relationship between microstructure and dry wear behavior of compo-cast nano-SiC(p)+micro-Gr(p)/Zn−35Al−1.2Mg−0.2Sr composite under different chilling conditions, Kovove Mater., 58(2020), No. 1, p. 1. doi: 10.4149/km_2020_1_1
    [5]
    S.K. Mishra, S. Biswas, and A. Satapathy, A study on processing, characterization and erosion wear behavior of silicon carbide particle filled ZA-27 metal matrix composites, Mater. Des., 55(2014), p. 958. doi: 10.1016/j.matdes.2013.10.069
    [6]
    B. Biljana, B. Jelena, B. Ilija, and J. Bore, Corrosion influence on surface appearance and microstructure of compo cast ZA27/SiCp composites in sodium chloride solution, Trans. Nonferrous Met. Soc. China, 26(2016), No. 6, p. 1512. doi: 10.1016/S1003-6326(16)64257-7
    [7]
    S. Liu, Q. Yuan, Y.Q. Gong, Y.L. Zhou, L.X. Li, and G. Xu, Correlations between microstructure and dry friction wear behavior of Zn−38Al−3.5Cu−1.2 Mg alloy reinforced with SiC nanoparticles, Trans. Indian Inst. Met., 72(2019), No. 10, p. 2557. doi: 10.1007/s12666-019-01725-w
    [8]
    H.A. Deore, J. Mishra, A.G. Rao, H.V. Mehtani, and D. Hiwarkar, Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites, Surf. Coat. Technol., 374(2019), p. 52. doi: 10.1016/j.surfcoat.2019.05.048
    [9]
    L. Chen, S.W. Yuan, D.M. Kong, G.Q. Zhao, Y.Y. He, and C.S. Zhang, Influence of aging treatment on themicrostructure, mechanical properties and anisotropy of hot extruded Al−Mg−Si plate, Mater. Des., 182(2019), art. No. 107999. doi: 10.1016/j.matdes.2019.107999
    [10]
    M.B. Seyedeh, J.A. Hamed, and J. Roohollah, Effect of non-isothermal aging on microstructure and mechanical properties of friction surfaced AA5083–15wt%Zn composites, Surf. Coat. Technol., 384(2020), art. No. 125307. doi: 10.1016/j.surfcoat.2019.125307
    [11]
    P. Liu, L.L. Hu, Q.H. Zhang, C.P. Yang, Z.S. Yu, J.Q. Zhang, J.M. Hu, and F.H. Cao, Effect of aging treatment on microstructure and corrosion behavior of Al−Zn−Mg aluminum alloy in aqueous solutions with different aggressive ions, J. Mater. Sci. Technol., 64(2019), p. 85. doi: 10.1016/j.jmst.2019.09.030
    [12]
    Y.C. Chiu, K.T. Du, H.Y. Bor, G.H. Liu, and S.L. Lee, The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al−Zn−Mg−Cu alloys, Mater. Chem. Phys., 247(2020), art. No. 122853. doi: 10.1016/j.matchemphys.2020.122853
    [13]
    Z.Q. Zhang, J.H. Yu, and D.Y. He, Effect of contact solid solution process on peak aging of Al−Zn−Mg−Cu alloys, J. Mater. Res. Technol., 9(2020), No. 3, p. 6940. doi: 10.1016/j.jmrt.2020.02.074
    [14]
    J.G. Zhao, Z.Y. Liu, S. Bai, D.P. Zeng, L. Luo, and J. Wang, Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and Re-aged Al−Zn−Mg−Cu alloy, J. Alloys Compd., 829(2020), art. No. 154469. doi: 10.1016/j.jallcom.2020.154469
    [15]
    X.W. Li, Q.Z. Cai, B.Y. Zhao, B. Liu, and W.W. Li, Precipitation behaviors and properties of solution-aging Al−Zn−Mg−Cu alloy refined with TiN nanoparticles, J. Alloys Compd., 746(2018), p. 462. doi: 10.1016/j.jallcom.2018.02.271
    [16]
    H.B. Zhang, B. Wang, Y.T. Zhang, Y. Li, J.L. He, and Y.F. Zhang, Influence of aging treatment on the microstructure and mechanical properties of CNTs/7075 Al composites, J. Alloys Compd., 814(2020), art. No. 152357. doi: 10.1016/j.jallcom.2019.152357
    [17]
    W.H. Yuan and B.L. An, Effect of heat treatment on microstructure and mechanical property of extruded 7090/SiCp composite, Trans. Nonferrous Met. Soc. China, 22(2012), No. 9, p. 2080. doi: 10.1016/S1003-6326(11)61431-3
    [18]
    G.N. Ma, D. Wang, Z.Y. Liu, B.L. Xiao, and Z.Y. Ma, An investigation on particle weakening in T6-treated SiC/Al−Zn−Mg−Cu composites, Mater. Charact., 158(2019), art. No. 109966. doi: 10.1016/j.matchar.2019.109966
    [19]
    W. L. Zhang, X. Ma, and D.Y. Ding, Aging behavior and tensile response of a SiC reinforced eutectoid zinc−aluminium−copper alloy matrix composite, J. Alloys Compd., 727(2017), p. 375. doi: 10.1016/j.jallcom.2017.08.130
    [20]
    Q. Yuan, G. Xu, S. Liu, M. Liu, H.J. Hu, and G.Q. Li, Effect of rolling reduction on microstructure and property of ultrafine grained low-carbon steel processed by cryorolling martensite, Metals, 8(2018), No. 7, p. 518. doi: 10.3390/met8070518
    [21]
    Q. Yuan, G. Xu, M. Liu, H.J. Hu, and J.Y. Tian, Effects of rolling temperature on the microstructure and mechanical properties in an ultrafine-grained low-carbon steel, Steel Res. Int., 90(2019), art. No. 1800318. doi: 10.1002/srin.201800318
    [22]
    Q. Yuan, G. Xu, J.Y. Tian, and W.C. Liang, The recrystallization behavior in ultrafine-grained structure steel fabricated by cold rolling and annealing, Arab. J. Sci. Eng., 42(2017), No. 11, p. 4771. doi: 10.1007/s13369-017-2633-9
    [23]
    Q. Yuan, G. Xu, M. Liu, S. Liu, and H.J. Hu, Evaluation of mechanical properties and microstructures of ultrafine grain low-carbon steel processed by cryorolling and annealing, Trans. Indian Inst. Met., 72(2019), No. 3, p. 741. doi: 10.1007/s12666-018-1526-2
    [24]
    Q. Yuan, G. Xu, S. Liu, M. Liu, and H.J. Hu, Effects of strain rate on the microstructure of ultrafine grained medium-carbon steel, Arch. Metall. Mater., 63(2018), No. 4, p. 1805. doi: 10.24425/amm.2018.125108
    [25]
    X.L. Gan, Q. Yuan, G. Zhao, H.J. Hu, J.Y. Tian, and G. Xu, Investigating the properties of coil tail in Ti–Nb–Mo microalloyed hot-rolled strip, Steel Res. Int., 90(2019), art. No. 1900040. doi: 10.1002/srin.201900040
    [26]
    X.L. Gan, Q. Yuan, G. Zhao, H.W. Ma, W. Liang, Z.L. Xue, W.W. Qiao, and G. Xu, Quantitative analysis of microstructures and strength of Nb–Ti microalloyed steel with different Ti additions, Metall. Mater. Trans. A., 51(2020), p. 2084. doi: 10.1007/s11661-020-05700-9
    [27]
    W. Liang, Q. Yuan, G.H. Chen, M. Liu, and W.W. Qiao, Fracture evolution in ferrite/martensite dual phase flange steel, Ironmaking Steelmaking, 48(2021), No. 1, p. 88. doi: 10.1080/03019233.2020.1733779
    [28]
    M. Taya and R.J. Arsenault, A comparison between a shear lag type and eshelby type model in predicting the mechanical properties of a short fiber composite, Scripta Metall., 21(1987), No. 3, p. 349. doi: 10.1016/0036-9748(87)90227-4
    [29]
    V.C. Nardone and K.M. Prewo, On the strength of discontinuous silicon carbide reinfirced aluminum composites, Script. Metall., 20(1986), No. 1, p. 43. doi: 10.1016/0036-9748(86)90210-3
    [30]
    R. Zare, H. Sharifi, and M.R. Saeri, Investigating the effect of SiC particles on the physical and thermal properties of Al6061/SiCp composite, J. Alloys Compd., 801(2019), p. 520. doi: 10.1016/j.jallcom.2019.05.317
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Share Article

    Article Metrics

    Article Views(1122) PDF Downloads(17) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return