Cite this article as:

Research Article

Effect of weld microstructure on brittle fracture initiation in a thermally aged boiling water reactor pressure vessel head weld metal

+ Author Affiliations
  • Received: 9 September 2020Revised: 20 October 2020Accepted: 18 November 2020Available online: 26 November 2020
  • The effect of the weld microstructure and inclusions on the brittle fracture initiation is investigated in a thermally aged ferritic high-nickel weld of a reactor pressure vessel head from a decommissioned nuclear power plant. As-welded regions consist mainly of acicular ferrite and reheated regions mainly of polygonal ferrite. The fractographic examination of Charpy V-notch impact toughness specimens reveal large inclusions (0.5–2.5 μm) at the brittle fracture primary initiation sites. Higher impact energies were measured for specimens where brittle fracture initiates from a smaller inclusion or an inclusion further from the V-notch. The density, geometry and chemical composition of the primary initiation inclusions were investigated. The brittle fracture crack initiated as a microcrack either within the multiphase oxide inclusions or from the debonded interfaces between the uncracked inclusions and weld metal matrix. The primary fracture site can be determined in all specimens tested in the lower part of the transition curve, at and below 41 J reference impact toughness energy, but not above, due to the change of the fracture mechanism, and hence the changes in the fracture appearance.
  • 加载中
  •  

  • [1] Xing-hai Yang,Xiao-hua Chen,Shi-wei Pan,Zi-dong Wang,Kai-xuan Chen,Da-yong Li, and Jun-wei Qin, Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu−Nb addition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2159-0
    [2] Hui Xu, Gong-zhen Zhang, Wei Cui, Shu-bin Ren, Qian-jin Wang, and  Xuan-hui Qu, Effect of Al2O3sf addition on the friction and wear properties of (SiCp+Al2O3sf)/Al2024 composites fabricated by pressure infiltration, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1581-z
    [3] Abdullah Aslan, Aydın Güneş, Emin Salur, Ömer Sinan Şahin, Hakan Burak Karadağ, and  Ahmet Akdemir, Mechanical properties and microstructure of composites produced by recycling metal chips, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1658-8
    [4] Chao Gu, Yan-ping Bao, Peng Gan, Min Wang, and  Jin-shan He, Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1609-4
    [5] Tong-hua Liu, Wei Wang, Wen-jiang Qiang, and  Guo-gang Shu, Mechanical properties and kinetics of thermally aged Z3CN20.09M cast duplex stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1666-8
    [6] Chun-duo Dai, Rui-na Ma, Wei Wang, Xiao-ming Cao, and  Yan Yu, Microstructure and properties of an Al-Ti-Cu-Si brazing alloy for SiC-metal joining, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1437-y
    [7] Lin Liu, Xin-da Wang, Xiang Li, Xiao-tong Qi, and  Xuan-hui Qu, Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1491-5
    [8] Yan-ping Xia, Pei-hong Wang, Shi-wei Shi, Gang He, Miao Zhang, Jian-guo Lü, and  Zhao-qi Sun, Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1450-1
    [9] Sung Jin Kim, Kang Mook Ryu, and  Min-suk Oh, Addition of cerium and yttrium to ferritic steel weld metal to improve hydrogen trapping efficiency, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1422-5
    [10] M. Siva Prasad, M. Ashfaq, N. Kishore Babu, A. Sreekanth, K. Sivaprasad, and  V. Muthupandi, Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1438-x
    [11] Anchalee Manonukul, Sukrit Songkuea, Pongporn Moonchaleanporn, and  Makiko Tange, Effect of weld line positions on the tensile deformation of two-component metal injection moulding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1531-1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(217) PDF downloads(9) Cited by()

Proportional views

Effect of weld microstructure on brittle fracture initiation in a thermally aged boiling water reactor pressure vessel head weld metal

  • 1. Nuclear Reactor Materials, VTT Technical Research Centre of Finland Ltd., Kivimiehentie 3, P.O. Box 1000, FI-02044 VTT, Finland
  • 2. Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden

Abstract: The effect of the weld microstructure and inclusions on the brittle fracture initiation is investigated in a thermally aged ferritic high-nickel weld of a reactor pressure vessel head from a decommissioned nuclear power plant. As-welded regions consist mainly of acicular ferrite and reheated regions mainly of polygonal ferrite. The fractographic examination of Charpy V-notch impact toughness specimens reveal large inclusions (0.5–2.5 μm) at the brittle fracture primary initiation sites. Higher impact energies were measured for specimens where brittle fracture initiates from a smaller inclusion or an inclusion further from the V-notch. The density, geometry and chemical composition of the primary initiation inclusions were investigated. The brittle fracture crack initiated as a microcrack either within the multiphase oxide inclusions or from the debonded interfaces between the uncracked inclusions and weld metal matrix. The primary fracture site can be determined in all specimens tested in the lower part of the transition curve, at and below 41 J reference impact toughness energy, but not above, due to the change of the fracture mechanism, and hence the changes in the fracture appearance.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return