Quantitative evaluation of multi-process collaborative operation in steelmaking-continuous casting section
-
Received:
18 August 2020
Revised: 16 November 2020
Accepted: 18 November 2020
Available online: 26 November 2020
Abstract: The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking-continuous casting section (SCCS). Meanwhile, this evaluation is indeed difficult since it relies on an in-depth understanding of the operating mechanism of SCCS, and few existing methods can be used to conduct the evaluation due to lacking of full-scale consideration on multi-factor related to production operation. In this study, three quantitative models were developed, and evaluated the multi-process collaborative operation level through the laminar flow operation degree, the process matching degree and the scheduling strategy available degree, respectively. By using the evaluation models for the laminar flow operation and process matching levels, the production status of two steelmaking plants of A and B was investigated based on actual production data. The results indicate the average laminar flow operation (process matching) degrees of SCCS are 0.638 (0.610) and 1.000 (0.759) for Plants A and B in the period from April to July 2019. Then, a scheduling strategy based on the optimization of furnace-caster coordinating mode was suggested for Plant A. Simulation experiments showed its higher availability than the greedy-based and manual ones. After applying it, the average process matching degree of SCCS of Plant A increases by 4.6% in the period from September to November 2019. Its multi-process collaborative operation level has been improved with less adjustments and interrupts in casting.