Cite this article as:

Invited Review

Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all solid-state lithium-ion battery—A review

+ Author Affiliations
  • Received: 17 October 2020Revised: 19 November 2020Accepted: 8 December 2020Available online: 12 December 2020
  • In order to achieve higher safety and higher energy density lithium-ion batteries, all solid-state lithium-ion batteries (ASSLIBs) have been widely studied. Recently, some review and experimental papers have focused on how to improve the ionic conductivity, stabilize the electrochemical performance and enhance the interface compatibility between the electrodes and the solid-state electrolytes (SSEs), including oxides, sulfides, composite electrolytes, gel electrolytes and so on. Among these SSEs, the garnet-structured Li7La3Zr2O12 (LLZO) is regarded as one of the most expected candidates for SSEs. However, numbers of challenges also exist for garnet-structured LLZO-based electrolytes, such as low ionic conductivity, indefinite cubic phase, poor interfacial compatibility with anodes/cathodes and so on, which urges us to explore effective solutions. Herein, we will review recent developments on garnet-structured LLZO and provide comprehensive insights to guide the development of garnet-structured LLZO electrolytes in this work. We will not only systematically and comprehensively discuss the following content, including preparation, element doping, the structure, stability, polymer-ceramic composite electrolytes (PCCEs) and interface improvement of LLZO, but also give a forward-looking perspective. We hope that it would provide meaningful guidance for the advanced solid garnet-electrolytes, and we think that the commercialization of ASSLIBs will be achieved in the near future.
  • 加载中
  •  

  • [1] Hao-yang Wang,Xue Cheng,Xiao-feng Li,Ji-min Pan, and Jun-hua Hu, Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2145-6
    [2] Xiao-yu Zhang,Chun-quan Li,Shui-lin Zheng,Yong-hao Di, and Zhi-ming Sun, A review of the synthesis and application of zeolites from coal-based solid wastes, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-021-2256-8
    [3] Qiao-kun Du,Qing-xia Wu,Hong-xun Wang,Xiang-juan Meng,Ze-kai Ji,Shu Zhao,Wei-wei Zhu,Chuang Liu,Min Ling, and Cheng-du Liang, Carbon dots modified silicon nanoparticle for lithium ion batteries, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2247-1
    [4] Qi Wang,Yue-yong Du,Yan-qing Lai,Fang-yang Liu,Liang-xing Jiang, and Ming Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-021-2249-7
    [5] Toyohisa Fujita,Hao Chen,Kai-tuo Wang,Chun-lin He,You-bin Wang,Gjergj Dodbiba, and Yue-zhou Wei, Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2127-8
    [6] Le-ping Wang, Gang Chen, Qi-xin Shen, Guo-min Li, Shi-you Guan, and  Bing Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1653-0
    [7] Zhi-yong Liu, Ying Cheng, Yan-xiang Li, Xu Zhou, Xiang Chen, and  Ning-zhen Wang, Shape formation of closed-cell aluminum foam in solid–liquid–gas coexisting state, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1647-y
    [8] Xian-hua Yue, Chun-fang Liu, Hui-hua Liu, Su-fen Xiao, Zheng-hua Tang, and  Tian Tang, Effects of hot compression deformation temperature on the microstructure and properties of Al-Zr-La alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1566-y
    [9] Yi-fan Zhang, Zhen Ji, Ke Chen, Cheng-chang Jia, Shan-wu Yang, and  Meng-ya Wang, Preparation and radar-absorbing properties of Al2O3/TiO2/Fe2O3/Yb2O3 composite powder, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1398-1
    [10] Ying Xu, Zhi-peng Yuan, Li-guang Zhu, Yi-hua Han, and  Xing-juan Wang, Shear-thinning behavior of the CaO-SiO2-CaF2-Si3N4 system mold flux and its practical application, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1500-8
    [11] Jian-fang Lü, Zhe-nan Jin, Hong-ying Yang, Lin-lin Tong, Guo-bao Chen, and  Fa-xin Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO-SiO2-“FeO”-12wt%ZnO-3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1459-5
    [12] Peng Jiang, Guo-xiang Yin, Ming-wei Yan, Jia-lin Sun, Bin Li, and  Yong Li, A new synthetic route to MgO-MgAl2O4-ZrO2 highly dispersed composite material through formation of Mg5Al2.4Zr1.7O12 metastable phase:synthesis and physical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1412-7
    [13] Kai-lin Cheng, Dao-bin Mu, Bo-rong Wu, Lei Wang, Ying Jiang, and  Rui Wang, Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1413-6
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(283) PDF downloads(17) Cited by()

Proportional views

Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all solid-state lithium-ion battery—A review

  • Corresponding authors:

    Tao Wei    E-mail: wt863@126.com

    Liu-ting Zhang    E-mail: zhanglt89@126.com

  • 1. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • 2. Institute of Mechanics and Energy, National Research Ogarev Mordovia State University, Saransk 430000, Russia

Abstract: In order to achieve higher safety and higher energy density lithium-ion batteries, all solid-state lithium-ion batteries (ASSLIBs) have been widely studied. Recently, some review and experimental papers have focused on how to improve the ionic conductivity, stabilize the electrochemical performance and enhance the interface compatibility between the electrodes and the solid-state electrolytes (SSEs), including oxides, sulfides, composite electrolytes, gel electrolytes and so on. Among these SSEs, the garnet-structured Li7La3Zr2O12 (LLZO) is regarded as one of the most expected candidates for SSEs. However, numbers of challenges also exist for garnet-structured LLZO-based electrolytes, such as low ionic conductivity, indefinite cubic phase, poor interfacial compatibility with anodes/cathodes and so on, which urges us to explore effective solutions. Herein, we will review recent developments on garnet-structured LLZO and provide comprehensive insights to guide the development of garnet-structured LLZO electrolytes in this work. We will not only systematically and comprehensively discuss the following content, including preparation, element doping, the structure, stability, polymer-ceramic composite electrolytes (PCCEs) and interface improvement of LLZO, but also give a forward-looking perspective. We hope that it would provide meaningful guidance for the advanced solid garnet-electrolytes, and we think that the commercialization of ASSLIBs will be achieved in the near future.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return