Cite this article as:

Invited Review

The effect of microstructure on corrosion behavior of ultra-high strength martensite steel-A literature review

+ Author Affiliations
  • Received: 29 May 2020Revised: 15 December 2020Accepted: 18 December 2020Available online: 19 December 2020
  • The ultra-high strength martensite steels are widely used in aerospace, ocean engineering, etc., due to their high strength, good ductility and acceptable corrosion resistance. This paper provides a review for the influence of microstructure on corrosion behavior of ultra-high strength martensite steels. Pitting is the most common corrosion type of ultra-high strength stainless steels, which always occurs at weak area of passive film such as inclusions, carbide/intermetallic interfaces. Meanwhile, the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion. The precipitation, dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps, leading to hydrogen embrittlement and stress corrosion cracking for ultra-high strength martensite steels. Yet, the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for ultra-high strength martensite steels. Finally, the corrosion mechanisms of additive manufacturing ultra-high strength steels and the ideas for designing new ultra-high strength martensite steel are explored.
  • 加载中
  •  

  • [1] Ya Wei,Yu Fu,Zhi-min Pan,Yi-chong Ma,Hong-xu Cheng,Qian-cheng Zhao,Hong Luo, and Xiao-gang Li, Study on influencing factors and mechanism of high-temperature oxidation of high-entropy alloy:A review, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-021-2257-7
    [2] Yan-yun Bai,Jin Gao,Tao Guo,Ke-wei Gao,Alex A. Volinsky, and Xiao-lu Pang, Review of the fatigue behavior of hard coating–ductile substrate systems, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2203-0
    [3] Wei-ning Shi,Shu-feng Yang, and Jing-she Li, Effect of nonmetallic inclusions on localized corrosion of spring steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2018-z
    [4] Wei Xiao,Yan-ping Bao,Chao Gu,Min Wang,Yu Liu,Yong-sheng Huang, and Guang-tao Sun, Study on ultra high cycle fatigue fracture mechanism of high quality bearing steel with different deoxidization methods, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-021-2253-y
    [5] En-dian Fan,Shi-qi Zhang,Dong-han Xie,Qi-yue Zhao,Xiao-gang Li, and Yun-hua Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2167-0
    [6] Xing-hai Yang,Xiao-hua Chen,Shi-wei Pan,Zi-dong Wang,Kai-xuan Chen,Da-yong Li, and Jun-wei Qin, Microstructure and mechanical properties of ultralow carbon high-strength steel weld metals with or without Cu−Nb addition, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2159-0
    [7] Hui-bin Wu, Tao Wu, Gang Niu, Tao Li, Rui-yan Sun, and  Yang Gu, Effect of the frequency of high-angle grain boundaries on the corrosion performance of 5wt%Cr steel in a CO2 aqueous environment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1575-x
    [8] Babak Shahriari, Reza Vafaei, Ehsan Mohammad Sharifi, and  Khosro Farmanesh, Aging behavior of a copper-bearing high-strength low-carbon steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1588-5
    [9] Gang Niu, Yin-li Chen, Hui-bin Wu, Xuan Wang, and  Di Tang, Corrosion behavior of high-strength spring steel for high-speed railway, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1599-2
    [10] Wei Liu, Qing-he Zhao, and  Shuan-zhu Li, Relationship between the specific surface area of rust and the electrochemical behavior of rusted steel in a wet-dry acid corrosion environment, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1378-5
    [11] Behzad Avishan, Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1490-6
    [12] Se-fei Yang, Ying Wen, Pan Yi, Kui Xiao, and  Chao-fang Dong, Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1518-y
    [13] Gong-jin Cheng, Zi-xian Gao, He Yang, and  Xiang-xin Xue, Effect of diboron trioxide on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1515-1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(128) PDF downloads(15) Cited by()

Proportional views

The effect of microstructure on corrosion behavior of ultra-high strength martensite steel-A literature review

  • Corresponding author:

    Chao-fang Dong    E-mail: cfdong@ustb.edu.cn

  • 1. Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Corrosion and Protection (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
  • 2. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
  • 3. Hunan Valin Lianyuan Iron and Steel Co. Ltd, Loudi 417009, China

Abstract: The ultra-high strength martensite steels are widely used in aerospace, ocean engineering, etc., due to their high strength, good ductility and acceptable corrosion resistance. This paper provides a review for the influence of microstructure on corrosion behavior of ultra-high strength martensite steels. Pitting is the most common corrosion type of ultra-high strength stainless steels, which always occurs at weak area of passive film such as inclusions, carbide/intermetallic interfaces. Meanwhile, the chromium carbide precipitations in the martensitic lath/prior austenite boundaries always result in intergranular corrosion. The precipitation, dislocation and grain/lath boundary are also used as crack nucleation and hydrogen traps, leading to hydrogen embrittlement and stress corrosion cracking for ultra-high strength martensite steels. Yet, the retained/reversed austenite has beneficial effects on the corrosion resistance and could reduce the sensitivity of stress corrosion cracking for ultra-high strength martensite steels. Finally, the corrosion mechanisms of additive manufacturing ultra-high strength steels and the ideas for designing new ultra-high strength martensite steel are explored.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return