Cite this article as:

Research Article

Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates

+ Author Affiliations
  • Received: 13 November 2020Revised: 18 December 2020Accepted: 28 December 2020Available online: 29 December 2020
  • The effect of different cooling rates (2.7, 5.5, 17.1, and 57.5 °C/s) on the solidification parameters, microstructure, and mechanical properties of Al-15Mg2Si composites was studied. The results showed that, high cooling rate refined the Mg2Si particles and changed their morphology to the more compacted forms with less microcracking tendency The average radius and fraction of primary Mg2Si particles decreased from 20 µm and 13.5% to about 10 µm and 7.3%, respectively, as the cooling rate increased from 2.7 °C/s to 57.5 °C/s. Increasing the cooling rate also improved the distribution of microconstituents, decreased the size of grains, and reduced the volume fraction of micropores. The mechanical properties results revealed that augmenting the cooling rate from 2.7 °C/s to about 57.5 °C/s increased the hardness and quality index by 25% and 245%, respectively. High cooling rate also changed the fracture mechanism from brittle dominated to a high-energy ductile mode comprising of extensive dimpled zones.
  • 加载中
  •  

  • [1] Hong-yu Chen,Dong-dong Gu,Qing Ge,Xin-yu Shi,Hong-mei Zhang,Rui Wang,Han Zhang, and Konrad Kosiba, Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-020-2133-x
    [2] Ali Shabani, Mohammad Reza Toroghinejad, and  Alireza Bagheri, Effects of intermediate Ni layer on mechanical properties of Al–Cu layered composites fabricated through cold roll bonding, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1604-9
    [3] José Luis Cabezas-Villa, José Lemus-Ruiz, Didier Bouvard, Omar Jiménez, Héctor Javier Vergara-Hernández, and  Luis Olmos, Sintering study of Ti6Al4V powders with different particle sizes and their mechanical properties, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1693-5
    [4] Li-zi He, Yi-heng Cao, Yi-zhou Zhou, and  Jian-zhong Cui, Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1547-1
    [5] Xiao-feng Wang, Ming-xing Guo, Cun-qiang Ma, Jian-bin Chen, Ji-shan Zhang, and  Lin-zhong Zhuang, Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1645-0
    [6] Yuan Gao, Zong-de Liu, Qi Wang, and  Yong-tian Wang, Microstructure and mechanical properties of Nb–Mo–ZrB2 composites prepared by hot-pressing sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1631-6
    [7] Dong-tao Wang, Hai-tao Zhang, Lei Li, Hai-lin Wu, Ke Qin, and  Jian-zhong Cui, The evolution of microstructure and mechanical properties during high-speed direct-chill casting in different Al-Mg2Si in situ composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-018-1659-7
    [8] Lin-zhi Wang, Ying Liu, Jiao-jiao Wu, and  Xi Zhang, Mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1440-3
    [9] Hai-xia Qin, Yong Li, Li-xiong Bai, Meng-long Long, Wen-dong Xue, and  Jun-hong Chen, Reaction mechanism for in-situ β-SiAlON formation in Fe3Si-Si3N4-Al2O3 composites, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1411-8
    [10] Shang-hao Tong, Yong Li, Ming-wei Yan, Peng Jiang, Jia-jia Ma, and  Dan-dan Yue, In situ reaction mechanism of MgAlON in Al-Al2O3-MgO composites at 1700℃ under flowing N2Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1496-0
    [11] Z. M. Sheggaf, R. Ahmad, M. B. A. Asmael, and  A. M. M. Elaswad, Solidification, microstructure, and mechanical properties of the as-cast ZRE1 magnesium alloy with different praseodymium contents, Int. J. Miner. Metall. Mater., https://doi.org/10.1007/s12613-017-1523-1
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Share Article

Article Metrics

Article views(96) PDF downloads(11) Cited by()

Proportional views

Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates

  • Corresponding author:

    Reza Taghiabadi    E-mail: taghiabadi@ikiu.ac.ir

  • 1. Department of Materials Science and Metallurgy, Imam Khomeini International University, Qazvin, Iran
  • 2. Department of Mechanical Engineering, University of New Brunswick, Fredericton, NB, Canada

Abstract: The effect of different cooling rates (2.7, 5.5, 17.1, and 57.5 °C/s) on the solidification parameters, microstructure, and mechanical properties of Al-15Mg2Si composites was studied. The results showed that, high cooling rate refined the Mg2Si particles and changed their morphology to the more compacted forms with less microcracking tendency The average radius and fraction of primary Mg2Si particles decreased from 20 µm and 13.5% to about 10 µm and 7.3%, respectively, as the cooling rate increased from 2.7 °C/s to 57.5 °C/s. Increasing the cooling rate also improved the distribution of microconstituents, decreased the size of grains, and reduced the volume fraction of micropores. The mechanical properties results revealed that augmenting the cooling rate from 2.7 °C/s to about 57.5 °C/s increased the hardness and quality index by 25% and 245%, respectively. High cooling rate also changed the fracture mechanism from brittle dominated to a high-energy ductile mode comprising of extensive dimpled zones.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return