Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and Cheng-du Liang, Carbon dots modified silicon nanoparticle for lithium ion batteries, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2247-1
Cite this article as:
Qiao-kun Du, Qing-xia Wu, Hong-xun Wang, Xiang-juan Meng, Ze-kai Ji, Shu Zhao, Wei-wei Zhu, Chuang Liu, Min Ling, and Cheng-du Liang, Carbon dots modified silicon nanoparticle for lithium ion batteries, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-020-2247-1
Research Article

Carbon dots modified silicon nanoparticle for lithium ion batteries

+ Author Affiliations
  • Received: 15 November 2020Revised: 28 December 2020Accepted: 29 December 2020Available online: 1 January 2021
  • A new idea is proposed to enhance the interaction between the silicon (Si) particles and binders by using carbon dots (CDs) to functionalize Si particles. Firstly, CDs rich in polar groups were synthesized by a simple hydrothermal method. Then, CDs were loaded on the surface of Si particles by impregnation method to obtain the functionalized Si particles (Si/CDs). Fourier transform infrared reflection (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and High-resolution transmission electron microscope (HRTEM) were used to study the phases and microstructures of Si/CDs. Si/CDs were used as the active material of anode for electrochemical performance experiments. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and constant current charge and discharge experiment were used to study the electrochemical performance of Si/CDs electrodes. The electrodes prepared by Si/CDs have good mechanical structure stability and electrochemical performance. After 150 cycles at 0.2 C, the capacity retention rate of Si/CDs electrode is 64.0%, which is twice as much as the pure Si electrode at the same test conditions.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (444) PDF downloads(26) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return