Feng-hua Chen, Yi-wen Wu, Huan-hong Zhang, Zhan-tu Long, Xiao-xin Lin, Ming-zhe Chen, Qing Chen, Yi-fan Luo, Shu-Lei Chou, and Rong-hua Zeng, The modulation of discharge plateau of benzoquinone for sodium-ion batteries, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-021-2261-y
Cite this article as:
Feng-hua Chen, Yi-wen Wu, Huan-hong Zhang, Zhan-tu Long, Xiao-xin Lin, Ming-zhe Chen, Qing Chen, Yi-fan Luo, Shu-Lei Chou, and Rong-hua Zeng, The modulation of discharge plateau of benzoquinone for sodium-ion batteries, Int. J. Miner. Metall. Mater. https://doi.org/10.1007/s12613-021-2261-y
Research Article

The modulation of discharge plateau of benzoquinone for sodium-ion batteries

+ Author Affiliations
  • Received: 13 November 2020Revised: 24 January 2021Accepted: 26 January 2021Available online: 2 February 2021
  • P-Benzoquinone (BQ) is a promising candidate for next generation sodium ion batteries (SIBs) owing to its high theoretical specific capacity, good reaction reversibility and high resource availability. However, BQ face many challenges in practical application, such as low discharge plateau (~2.7 V) as cathode material or high discharge plateau as anode material compared with inorganic materials for SIBs, and high solubility in organic electrolytes, resulting in low power density and energy density. Here, tetrahydroxybenzoquinone tetrasodium salt (Na4C6O6) is synthesized through a simple neutralization reaction at low temperature. The four -ONa electron donating groups introduced on structure of BQ lower greatly the discharge plateau from ~2.70 V to ~1.26 V with the decrease value of over 1.4 V, which can make BQ change from cathode to anode material for SIBs. At the same time, the addition of four -ONa hydrophilic groups inhibit effectively the dissolution of BQ in the organic electrolyte a certain extent. As a result, Na4C6O6 as anode displays a moderate discharge capacity and cycling performance at an average work voltage of ~1.26 V versus Na/Na+. When evaluated as a Na-ion full cell (NIFC), a Na3V2(PO4)3 || Na4C6O6 NIFC reveals a moderate discharge capacity and an average discharge plateau of ~1.4 V. This research offers a new molecular structure design strategy to reduce the discharge plateau and restrain the dissolution of organic electrode materials simultaneously.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (294) PDF downloads(18) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return