Zhao-jun Xu, Zhong Zheng, and Xiao-qiang Gao, Operation optimization of the steel manufacturing process: A brief review, Int. J. Miner. Metall. Mater., 28(2021), No. 8, pp. 1274-1287. https://doi.org/10.1007/s12613-021-2273-7
Cite this article as:
Zhao-jun Xu, Zhong Zheng, and Xiao-qiang Gao, Operation optimization of the steel manufacturing process: A brief review, Int. J. Miner. Metall. Mater., 28(2021), No. 8, pp. 1274-1287. https://doi.org/10.1007/s12613-021-2273-7
Invited review

Operation optimization of the steel manufacturing process: A brief review

+ Author Affiliations
  • Corresponding author:

    Zhong Zheng    E-mail: zhengzh@cqu.edu.cn

  • Received: 6 August 2020Revised: 25 February 2021Accepted: 26 February 2021Available online: 27 February 2021
  • Against the realistic background of excess production capacity, product structure imbalance, and high material and energy consumption in steel enterprises, the implementation of operation optimization for the steel manufacturing process is essential to reduce the production cost, increase the production or energy efficiency, and improve production management. In this study, the operation optimization problem of the steel manufacturing process, which needed to go through a complex production organization from customers’ orders to workshop production, was analyzed. The existing research on the operation optimization techniques, including process simulation, production planning, production scheduling, interface scheduling, and scheduling of auxiliary equipment, was reviewed. The literature review reveals that, although considerable research has been conducted to optimize the operation of steel production, these techniques are usually independent and unsystematic. Therefore, the future work related to operation optimization of the steel manufacturing process based on the integration of multi technologies and the intersection of multi disciplines were summarized.

  • loading
  • [1]
    W.Q. Sun, Q. Wang, Y. Zhou, and J.Z. Wu, Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives, Appl. Energy, 268(2020), art. No. 114946. doi: 10.1016/j.apenergy.2020.114946
    [2]
    Y. Xing, W.B. Zhang, W. Su, W. Wen, X.J. Zhao, and J.X. Yu, Research of ultra-low emission technologies of the iron and steel industry in China, Chin. J. Eng., 43(2021), No. 1, p. 1.
    [3]
    H. Lasi, P. Fettke, H. G. Kemper, T. Feld, and M. Hoffmann, Industry 4.0, Bus. Inf. Syst. Eng., 6(2014), No. 4, p. 239. doi: 10.1007/s12599-014-0334-4
    [4]
    R.Y. Yin, Metallurgical Process Engineering. Springer-Verlag, Berlin, Heidelberg, 2011.
    [5]
    X.F. Li, L.Y. Xu, H.H. Shao, and D.X. Ren, Modeling and simulation of physical distribution system using Petri net & COM, Inf. Control, 30(2001), No. 3, p. 284.
    [6]
    Y.Q. Zhao, L. Guo, G.H. Bi, and D.F. Zhu, Analysis and design of steel-making complex logistics system based on multi-Agent, Metall. Ind. Autom., 36(2012), No. 2, p. 1.
    [7]
    Z. Zheng, L.M. He, and X.Q. Gao, Cellular automata model for simulating logistics system in steel-making process, Iron Steel, 39(2004), No. 11, p. 75.
    [8]
    M.P. Fanti, G. Iacobellis, G. Rotunno, and W. Ukovich, A simulation based analysis of production scheduling in a steelmaking and continuous casting plant, [in] 2013 IEEE International Conference on Automation Science and Engineering (CASE). Madison, 2013, p. 150.
    [9]
    M.P. Fanti, G. Rotunno, G. Stecco, W. Ukovich, and S. Mininel, An integrated system for production scheduling in steelmaking and casting plants, IEEE Trans. Autom. Sci. Eng., 13(2016), No. 2, p. 1112. doi: 10.1109/TASE.2015.2477362
    [10]
    S.H. Melouk, N.K. Freeman, D. Miller, and M. Dunning, Simulation optimization-based decision support tool for steel manufacturing, Int. J. Prod. Econ., 141(2013), No. 1, p. 269. doi: 10.1016/j.ijpe.2012.08.001
    [11]
    S. Deng, A.J. Xu, and H.B. Wang, Simulation study on steel plant capacity and equipment efficiency based on plant simulation, Steel Res. Int., 90(2019), No. 5, art. No. 1800507. doi: 10.1002/srin.201800507
    [12]
    S.P. Wu, A.J. Xu, W. Song, and X.P. Li, Structural optimization of the production process in steel plants based on FlexSim simulation, Steel Res. Int., 90(2019), No. 10, art. No. 1900201. doi: 10.1002/srin.201900201
    [13]
    N.M.Z.N. Mohamed, M.F.F.A. Rashid, A.N.M. Rose, and W.Y. Ting, Production layout improvement for steel fabrication works, J. Ind. Intell. Inf., 3(2015), No. 2, p. 133.
    [14]
    L.F. Gelders and L.N. van Wassenhove, Production planning: A review, Eur. J. Oper. Res., 7(1981), No. 2, p. 101. doi: 10.1016/0377-2217(81)90271-X
    [15]
    S.X. Liu, J.F. Tang, and J.H. Song, Order-planning model and algorithm for manufacturing steel sheets, Int. J. Prod. Econ., 100(2006), No. 1, p. 30. doi: 10.1016/j.ijpe.2004.10.002
    [16]
    C.Y. Yu, M.R. Xu, and R.X. Qu, On the production order planning of integrated steel production SM–CC–HR–FF, J. Northeast. Univ. Nat. Sci., 29(2008), No. 11, p. 1548.
    [17]
    C.Y. Yu and C.E. Wang, Multi-objective order-planning model and algorithm for integrated steel production, Control Theory Appl., 26(2009), No. 12, p. 1452.
    [18]
    B. Zhang, G.S. Wang, Y. Yang, and S. Zhang, Solving the order planning problem at the steelmaking shops by considering logistics balance on the plant-wide process, IEEE Access, 7(2019), p. 139938. doi: 10.1109/ACCESS.2019.2937659
    [19]
    J.H. Lin, M. Liu, J.H. Hao, and P. Gu, Many-objective harmony search for integrated order planning in steelmaking–continuous casting–hot rolling production of multi-plants, Int. J. Prod. Res., 55(2017), No. 14, p. 4003. doi: 10.1080/00207543.2016.1232498
    [20]
    A. Gargani and P. Refalo, An efficient model and strategy for the steel mill slab design problem. [in] C. Bessière ed., Principles and Practice of Constraint Programming – CP 2007, Lecture Notes in Computer Science, Vol. 4741, Springer, Berlin, Heidelberg, 2007, p. 77.
    [21]
    P. van Hentenryck and L. Michel, The steel mill slab design problem revisited, [in] L. Perron and M.A. Trick eds., Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Lecture Notes in Computer Science, Vol. 5015, Springer, Berlin, Heidelberg, 2008, p. 377.
    [22]
    W.X. Zhang and T.K. Li, Modelling and algorithm for the slab designing problem based on constraint satisfaction, J. Univ. Sci. Technol. Beijing, 33(2011), No. 5, p. 641.
    [23]
    S. Dash, J. Kalagnanam, C. Reddy, and S.H. Song, Production design for plate products in the steel industry, IBM J. Res. Dev., 51(2007), No. 3.4, p. 345. doi: 10.1147/rd.513.0345
    [24]
    J. Wy and B.I. Kim, Two-staged guillotine cut, two-dimensional bin packing optimisation with flexible bin size for steel mother plate design, Int. J. Prod. Res., 48(2010), No. 22, p. 6799. doi: 10.1080/00207540903317523
    [25]
    S. Heinz, T. Schlechte, R. Stephan, and M. Winkler, Solving steel mill slab design problems, Constraints, 17(2012), No. 1, p. 39. doi: 10.1007/s10601-011-9113-8
    [26]
    W.Z. Hu, Z. Zheng, J.Y, Long, and X.Q. Gao, Modeling and solving cutting stock problem considering specification uncertainties of mother plate and slab of medium and heavy plate, Comput. Integr. Manuf. Sys., 23(2017), No. 11, p. 2508.
    [27]
    Z. Zheng, W.Z. Hu, J.Y. Long, and X.Q. Gao, Research and application for medium steel plate-slab design system, J. Northeast. Univ. Nat. Sci., 38(2017), No. 10, p. 1405.
    [28]
    Z. Zheng, Y.Z. Wang, Y, Lu, and X.Q. Gao, Intelligent optimization model and system of plate and slab design of medium steel plate, Iron Steel, 55(2020), No. 4, p. 53.
    [29]
    L.X. Tang and G.S. Wang, Decision support system for the batching problems of steelmaking and continuous-casting production, Omega, 36(2008), No. 6, p. 976. doi: 10.1016/j.omega.2007.11.002
    [30]
    L.X. Tang, G.S. Wang, J.Y. Liu, and J.Y. Liu, A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous-casting production, Nav. Res. Logist., 58(2011), No. 4, p. 370. doi: 10.1002/nav.20452
    [31]
    H.Y. Dong, M. Huang, W.H. Ip, and X.W. Wang, On the integrated charge planning with flexible jobs in primary steelmaking processes, Int. J. Prod. Res., 48(2010), No. 21, p. 6499. doi: 10.1080/00207540903246656
    [32]
    C.X. Li, B.L. Yuan, J.H. Ren, L.L. Sun, and J. Wang, Research on optimization of charge batch planning based on augmented Lagrangian relaxation algorithm, IFAC-PapersOnLine, 52(2019), No. 1, p. 814. doi: 10.1016/j.ifacol.2019.06.162
    [33]
    F. Yuan, S.P. Wu, W. Song, and A.J. Xu, Charge plan model for steelmaking-continuous casting section, Metals, 10(2020), No. 9, art. No. 1196. doi: 10.3390/met10091196
    [34]
    L.X. Tang and J.X. Luo, A new ILS algorithm for cast planning problem in steel industry, ISIJ Int., 47(2007), No. 3, p. 443. doi: 10.2355/isijinternational.47.443
    [35]
    F. Yang, Q.Q. Li, S. Liu, and G.R. Wang, Hybrid heuristic-cross entropy algorithm for cast planning problem, Comput. Integr. Manuf. Syst., 20(2014), No. 9, p. 2241.
    [36]
    F. Yang, Q.Q. Li, and G.R. Wang, Hybrid improved algorithm for cast planning problem with flexible width, Control Decis., 30(2015), No. 2, p. 348.
    [37]
    J. Yi, S.B. Tan, W.G. Li, and B. Du, Hybrid optimization algorithm for solving combining tundish MTSP model on continuous casting plan, J. Northeast. Univ. Nat. Sci., 33(2012), No. 9, p. 1235.
    [38]
    Y.C. Xue, D.L. Zheng, and Q.W. Yang, Optimum steel making cast plan with unknown cast number based on the modified discrete particle swarm optimization, Control Theory Appl., 27(2010), No. 2, p. 273.
    [39]
    L.X. Tang, G.S. Wang, and Z.L. Chen, Integrated charge batching and casting width selection at Baosteel, Oper. Res., 62(2014), No. 4, p. 772. doi: 10.1287/opre.2014.1278
    [40]
    J.Y. Long, Z.Z. Sun, H.B. Chen, Y. Bai, and Y. Hong, Variable neighborhood search for integrated determination of charge batching and casting start time in steel plants, J. Intell. Fuzzy Syst., 34(2018), No. 6, p. 3821. doi: 10.3233/JIFS-169554
    [41]
    W.J. Xu, L.X. Tang, and E.N. Pistikopoulos, Modeling and solution for steelmaking scheduling with batching decisions and energy constraints, Comput. Chem. Eng., 116(2018), p. 368. doi: 10.1016/j.compchemeng.2018.03.010
    [42]
    W.J. Xu, F. Zou, and L.X. Tang, A subpopulation-based differential evolution algorithm for scheduling with batching decisions in steelmaking-continuous casting production, [in] 2016 IEEE Congress on Evolutionary Computation (CEC). Vancouver, 2016, p. 2784.
    [43]
    E.D. Kosiba, J.R. Wright, and A.E. Cobbs, Discrete event sequencing as a traveling salesman problem, Comput. Ind., 19(1992), No. 3, p. 317. doi: 10.1016/0166-3615(92)90069-Y
    [44]
    I.C. Ozsoy, G.E. Ruddle, and A.F. Crawley, Optimum scheduling of a hot rolling process by nonlinear programming, Can. Metall. Q., 31(1992), No. 3, p. 217. doi: 10.1179/cmq.1992.31.3.217
    [45]
    L.X. Tang, J.Y. Liu, A.Y. Rong, and Z.H. Yang, A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex, Eur. J. Oper. Res., 124(2000), No. 2, p. 267. doi: 10.1016/S0377-2217(99)00380-X
    [46]
    S.J. Jia, J. Yi, G.K. Yang, B. Du, and J. Zhu, A multi-objective optimisation algorithm for the hot rolling batch scheduling problem, Int. J. Prod. Res., 51(2013), No. 3, p. 667. doi: 10.1080/00207543.2011.654138
    [47]
    K. Puttkammer, M.G. Wichmann, and T.S. Spengler, A GRASP heuristic for the hot strip mill scheduling problem under consideration of energy consumption, J. Bus. Econ., 86(2016), No. 5, p. 537.
    [48]
    W.Z. Hu, Z. Zheng, X.Q. Gao, and P.M. Pardalos, An improved method for the hot strip mill production scheduling problem, Int. J. Prod. Res., 57(2019), No. 10, p. 3238. doi: 10.1080/00207543.2019.1579932
    [49]
    R. Zhang, S.J. Song, and C. Wu, Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm, IEEE Trans. Ind. Inform., 16(2020), No. 4, p. 2809. doi: 10.1109/TII.2019.2944247
    [50]
    L.L. Liu, X. Wan, Z.G. Gao, X.L. Li, and B.W. Feng, Research on modelling and optimization of hot rolling scheduling, J. Ambient Intell. Human. Comput., 10(2019), No. 3, p. 1201. doi: 10.1007/s12652-018-0944-7
    [51]
    M. Pinedo and K. Hadavi, Scheduling: Theory, algorithms and systems development. [in] Gaul W., A. Bachem, W. Habenicht, W.Runge, and W.W. Stahl eds. Operations Research Proceedings, Springer, Berlin, Heidelberg, 1991, p. 35.
    [52]
    D. Ouelhadj and S. Petrovic, A survey of dynamic scheduling in manufacturing systems, J. Sched., 12(2009), No. 4, p. 417. doi: 10.1007/s10951-008-0090-8
    [53]
    A. Bellabdaoui and J. Teghem, A mixed-integer linear programming model for the continuous casting planning, Int. J. Prod. Econ., 104(2006), No. 2, p. 260. doi: 10.1016/j.ijpe.2004.10.016
    [54]
    I. Harjunkoski and I.E. Grossmann, A decomposition approach for the scheduling of a steel plant production, Comput. Chem. Eng., 25(2001), No. 11-12, p. 1647. doi: 10.1016/S0098-1354(01)00729-3
    [55]
    L.X. Tang, P.B. Luh, J.Y. Liu, and L. Fang, Steel-making process scheduling using Lagrangian relaxation, Int. J. Prod. Res., 40(2002), No. 1, p. 55. doi: 10.1080/00207540110073000
    [56]
    K. Mao, Q.K. Pan, X.F. Pang, and T.Y. Chai, A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process, Eur. J. Oper. Res., 236(2014), No. 1, p. 51. doi: 10.1016/j.ejor.2013.11.010
    [57]
    H.J. Cui and X.C. Luo, An improved Lagrangian relaxation approach to scheduling steelmaking–continuous casting process, Comput. Chem. Eng., 106(2017), p. 133. doi: 10.1016/j.compchemeng.2017.05.026
    [58]
    Q.K. Pan, L. Wang, K. Mao, J.H. Zhao, and M. Zhang, An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process, IEEE Trans. Autom. Sci. Eng., 10(2013), No. 2, p. 307. doi: 10.1109/TASE.2012.2204874
    [59]
    J.Y. Long, Z. Zheng, X.Q. Gao, and P.M. Pardalos, Scheduling a realistic hybrid flow shop with stage skipping and adjustable processing time in steel plants, Appl. Soft Comput., 64(2018), p. 536. doi: 10.1016/j.asoc.2017.12.044
    [60]
    K. Worapradya and P. Thanakijkasem, Proactive scheduling for steelmaking-continuous casting plant with uncertain machine breakdown using distribution-based robustness and decomposed artificial neural network, Asia Pac. J. Oper. Res., 32(2015), No. 2, art. No. 1550010. doi: 10.1142/S0217595915500104
    [61]
    M.H. Fazel Zarandi and F. Dorry, A hybrid fuzzy PSO algorithm for solving steelmaking-continuous casting scheduling problem, Int. J. Fuzzy Syst., 20(2018), No. 1, p. 219. doi: 10.1007/s40815-017-0331-0
    [62]
    S.P. Yu and Q.K. Pan, A rescheduling method for operation time delay disturbance in steelmaking and continuous casting production process, J. Iron Steel Res. Int., 19(2012), No. 12, p. 33. doi: 10.1016/S1006-706X(13)60029-1
    [63]
    L.X. Tang, Y. Zhao, and J.Y. Liu, An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production, IEEE Trans. Evol. Comput., 18(2014), No. 2, p. 209. doi: 10.1109/TEVC.2013.2250977
    [64]
    K. Mao, Q.K. Pan, X.F. Pang, and T.Y. Chai, An effective Lagrangian relaxation approach for rescheduling a steelmaking–continuous casting process, Control Eng. Pract., 30(2014), p. 67. doi: 10.1016/j.conengprac.2014.06.003
    [65]
    J.Y. Long, Z. Zheng, and X.Q. Gao, Dynamic scheduling in steelmaking–continuous casting production for continuous caster breakdown, Int. J. Prod. Res., 55(2017), No. 11, p. 3197. doi: 10.1080/00207543.2016.1268277
    [66]
    K.K. Peng, Q.K. Pan, L. Gao, B. Zhang, and X.F. Pang, An improved artificial bee colony algorithm for real-world hybrid flowshop rescheduling in steelmaking–refining–continuous casting process, Comput. Ind. Eng., 122(2018), p. 235. doi: 10.1016/j.cie.2018.05.056
    [67]
    S. Rahal, Z.K. Li, and D.J. Papageorgiou, Proactive and reactive scheduling of the steelmaking and continuous casting process through adaptive robust optimization, Comput. Chem. Eng., 133(2020), art. No. 106658. doi: 10.1016/j.compchemeng.2019.106658
    [68]
    H. Hadera, I. Harjunkoski, G. Sand, I.E. Grossmann, and S. Engell, Optimization of steel production scheduling with complex time-sensitive electricity cost, Comput. Chem. Eng., 76(2015), p. 117. doi: 10.1016/j.compchemeng.2015.02.004
    [69]
    Y.Y. Tan, M.C. Zhou, Y. Zhang, X.W. Guo, L. Qi, and Y.H. Wang, Hybrid scatter search algorithm for optimal and energy-efficient steelmaking-continuous casting, IEEE Trans. Autom. Sci. Eng., 17(2020), No. 4, p. 1814. doi: 10.1109/TASE.2020.2979079
    [70]
    Z.J. Xu, Z. Zheng, and X.Q. Gao, Energy-efficient steelmaking-continuous casting scheduling problem with temperature constraints and its solution using a multi-objective hybrid genetic algorithm with local search, Appl. Soft Comput., 95(2020), art. No. 106554. doi: 10.1016/j.asoc.2020.106554
    [71]
    G.S. Wang and L.X. Tang, A column generation for locomotive scheduling problem in molten iron transportation, [in] 2007 IEEE International Conference on Automation and Logistics. Jinan, 2007, p. 2227.
    [72]
    H. Huang, T.Y. Chai, X.C. Luo, B.L. Zheng, and H. Wang, Two-stage method and application for molten iron scheduling problem between iron-making plants and steel-making plants, IFAC Proc. Vol., 44(2011), No. 1, p. 9476. doi: 10.3182/20110828-6-IT-1002.01373
    [73]
    B. Ge, K. Wang, and Y. Han, A design for simulation model and algorithm of rail transport of molten iron in steel enterprise, Сomput. Mod. New Technol., 18(2014), No. 11, p. 1056.
    [74]
    Y.Y. Liu and G.S. Wang, The mix integer programming model for torpedo car scheduling in iron and steel industry, [in] Proceedings of the International Conference on Computer Information Systems and Industrial Applications, Atlantis Press, Bangkok, 2015, p. 731.
    [75]
    L.X. Tang, G.S. Wang, and J.Y. Liu, A branch-and-price algorithm to solve the molten iron allocation problem in iron and steel industry, Comput. Oper. Res., 34(2007), No. 10, p. 3001. doi: 10.1016/j.cor.2005.11.010
    [76]
    H. Huang, T.Y. Chai, B.L. Zheng, and X.C. Luo, Research on the molten iron scheduling system oriented to iron-steel correspondence and its application, J. Northeast. Univ. Nat. Sci., 31(2010), No. 11, p. 1525.
    [77]
    H. Huang, T.Y. Chai, B.L. Zheng, X.C. Luo, and H. Zhang, Two-stage case-based reasoning for molten iron dynamic scheduling system oriented iron-steel correspondence, CIESC J., 61(2010), No. 8, p. 2021.
    [78]
    S.S. Ning, W. Wang, and Q.L. Liu, An optimal scheduling algorithm for reheating furnace in steel production, Control Decis., 21(2006), No. 10, p. 1138.
    [79]
    J.S. Broughton, M. Mahfouf, and D.A. Linkens, A paradigm for the scheduling of a continuous walking beam reheat furnace using a modified genetic algorithm, Mater. Manuf. Process., 22(2007), No. 5, p. 607. doi: 10.1080/10426910701323243
    [80]
    Y.J. Yang, Z.Y. Jiang, and X.X. Zhang, Model and algorithm of furnace area production scheduling in slab hot rolling, J. Univ. Sci. Technol. Beijing, 34(2012), No. 7, p. 841.
    [81]
    L.X. Tang, H.Z. Ren, and Y. Yang, Reheat furnace scheduling with energy consideration, Int. J. Prod. Res., 53(2015), No. 6, p. 1642. doi: 10.1080/00207543.2014.919418
    [82]
    Q. Ilmer, S. Haeussler, and H. Missbauer, Optimal synchronization of the hot rolling stage in steel production, IFAC-PapersOnLine, 52(2019), No. 13, p. 1615. doi: 10.1016/j.ifacol.2019.11.431
    [83]
    L.X. Tang and X.P. Wang, A two-phase heuristic for the production scheduling of heavy plates in steel industry, IEEE Trans. Control Syst. Technol., 18(2010), No. 1, p. 104. doi: 10.1109/TCST.2009.2014960
    [84]
    K. Li and H.X. Tian, Integrated scheduling of reheating furnace and hot rolling based on improved multiobjective differential evolution, Complexity, 2018(2018), art. No. 1919438.
    [85]
    B.L. Wang, K. Huang, and T.K. Li, Two-stage hybrid flowshop scheduling with simultaneous processing machines, J. Sched., 21(2018), No. 4, p. 387. doi: 10.1007/s10951-017-0545-x
    [86]
    T. Tanizaki, T. Tamura, H. Sakai, Y. Takahashi, and T. Imai, A Heuristic Scheduling Algorithm for steel making process with crane handling, J. Oper. Res. Soc. Jpn., 49(2006), No. 3, p. 188.
    [87]
    Z. Zheng, L. Xu, and X.Q. Gao, Simulation model of crane scheduling in workshop based on cellular automata, Syst. Eng. Theory Pract., 28(2008), No. 2, p. 137.
    [88]
    Z. Zheng, C. Zhou, and K. Chen, Crane scheduling simulation model based on immune genetic algorithms, Syst. Eng. Theory Pract., 33(2013), No. 1, p. 223.
    [89]
    X.Q. Gao, P. Li, J.Y. Long, and Z. Zheng, Multi-objective modelling and solving for crane scheduling with spatio-temporal constraints in casting workshop, Syst. Eng. Theory Pract., 37(2017), No. 9, p. 2373.
    [90]
    J. Li, A.J. Xu, and X.S. Zang, Simulation-based solution for a dynamic multi-crane-scheduling problem in a steelmaking shop, Int. J. Prod. Res., 58(2020), No. 22, p. 6970. doi: 10.1080/00207543.2019.1687952
    [91]
    L.X. Tang, X. Xie, and J.Y. Liu, Crane scheduling in a warehouse storing steel coils, IIE Trans., 46(2014), No. 3, p. 267. doi: 10.1080/0740817X.2013.802841
    [92]
    X. Xie, Y.Y. Zheng, and Y.P. Li, Multi-crane scheduling in steel coil warehouse, Expert Syst. Appl., 41(2014), No. 6, p. 2874. doi: 10.1016/j.eswa.2013.10.022
    [93]
    G.N. Maschietto, Y. Ouazene, M.G. Ravetti, M.C. de Souza, and F. Yalaoui, Crane scheduling problem with non-interference constraints in a steel coil distribution centre, Int. J. Prod. Res., 55(2017), No. 6, p. 1607. doi: 10.1080/00207543.2016.1193249
    [94]
    S. Kuyama and S. Tomiyama, A crane guidance system with scheduling optimization technology in a steel slab yard, ISIJ Int., 56(2016), No. 5, p. 820. doi: 10.2355/isijinternational.ISIJINT-2015-466
    [95]
    G.D. Zhao, J.Y. Liu, L.X. Tang, R. Zhao, and Y. Dong, Model and heuristic solutions for the multiple double-load crane scheduling problem in slab yards, IEEE Trans. Autom. Sci. Eng., 17(2020), No. 3, p. 1307. doi: 10.1109/TASE.2019.2946196
    [96]
    X. Wang, M.C. Zhou, Q.H. Zhao, S.X. Liu, X.W. Guo, and L. Qi, A branch and price algorithm for crane assignment and scheduling in slab yard, IEEE Trans. Autom. Sci. Eng., (2020). DOI: 10.1109/TASE.2020.2996227
    [97]
    X.Y. Wang, W. Liu, B.L. Zheng, and T.Y. Chai, Design and development of ladle scheduling software for steelmaking and continuous casting, J. Syst. Simul., 19(2007), No. 13, p. 2913.
    [98]
    Y.Y. Tan, Z. Wei, S. Wang, W. Zhou, and S.X. Liu, Optimization algorithm for ladle scheduling based on the VRPTW-AT model, J. Syst. Eng., 28(2013), No. 1, p. 94.
    [99]
    Z. Wei, T. Zhu, T.Z. He, and S.X. Liu, A fast heuristic algorithm for ladle scheduling based on vehicle routing problem with time windows model, ISIJ Int., 54(2014), No. 11, p. 2588. doi: 10.2355/isijinternational.54.2588
    [100]
    Y.Y. Tan, T.C.E. Cheng, and M. Ji, A multi-objective scatter search for the ladle scheduling problem, Int. J. Prod. Res., 52(2014), No. 24, p. 7513. doi: 10.1080/00207543.2014.939238
    [101]
    W. Liu, X.F. Pang, and T.Y. Chai, Research on the dephosphorization ladle scheduling algorithm of steelmaking–refining–continuous casting process, Control Eng. China, 26(2019), No. 4, p. 790.
    [102]
    W. Liu, X.F. Pang, S.P. Yu, C.X. Li, and T.Y. Chai, Steelmaking–casting of molten steel by decarburization ladle matching, Math. Probl. Eng., 2018(2018), p. 1.
    [103]
    W. Song, A.J. Xu, K. Feng, S.P. Wu, and X.S. Zang, Batch planning model and genetic algorithm for steelmaking and continuous casting, [in] 2019 The China Automation Congress (CAC), Hangzhou, 2019, p. 257.
    [104]
    W.X. Zhang and T.K. Li, Batch plan optimization of steel integrated production with multiple processes, Comput. Integr. Manuf. Syst., 19(2013), No. 6, p. 1296.
    [105]
    W.X. Zhang and T.K. Li, Integrated batch planning optimization based on particle swarm optimization and constraint satisfaction for steel production, Comput. Integr. Manuf. Syst., 16(2010), No. 4, p. 840.
    [106]
    Y. Xu, F. Liu, G.H. Huang, and G.H. Cheng, An optimization model under interval and fuzzy uncertainties for a by-product gas system of an iron and steel plant, Eng. Optim., 51(2019), No. 3, p. 447. doi: 10.1080/0305215X.2018.1464565
    [107]
    J.G.C. Pena, V.B. de Oliveira Junior, and J.L.F. Salles, Optimal scheduling of a by-product gas supply system in the iron- and steel-making process under uncertainties, Comput. Chem. Eng., 125(2019), p. 351. doi: 10.1016/j.compchemeng.2019.01.025
    [108]
    Z.Q. Wei, X.Q. Zhai, Q. Zhang, G. Yang, T. Du, and J.Q. Wei, A MINLP model for multi-period optimization considering couple of gas–steam–electricity and time of use electricity price in steel plant, Appl. Therm. Eng., 168(2020), art. No. 114834. doi: 10.1016/j.applthermaleng.2019.114834
    [109]
    Z.Y. Han, J. Zhao, and W. Wang, An optimized oxygen system scheduling with electricity cost consideration in steel industry, IEEE/CAA J. Autom. Sin., 4(2017), No. 2, p. 216. doi: 10.1109/JAS.2017.7510439
    [110]
    Z.Y. Han, J. Zhao, W. Wang, and Y. Liu, A two-stage method for predicting and scheduling energy in an oxygen/nitrogen system of the steel industry, Control Eng. Pract., 52(2016), p. 35. doi: 10.1016/j.conengprac.2016.03.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Share Article

    Article Metrics

    Article Views(6916) PDF Downloads(531) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return