Jing Han, Cong Wang, Yuan-ming Song, Zhi-yuan Liu, Jia-peng Sun, and Ji-yun Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2294-2
Cite this article as:
Jing Han, Cong Wang, Yuan-ming Song, Zhi-yuan Liu, Jia-peng Sun, and Ji-yun Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater.,(2021). https://doi.org/10.1007/s12613-021-2294-2
Research Article

Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling

+ Author Affiliations
  • Received: 11 January 2021Revised: 15 March 2021Accepted: 22 April 2021Available online: 23 April 2021
  • Mg alloy casting parts commonly suffer from drawbacks of low surface properties, high susceptibility to corrosion, unsatisfactory absolute strength, and poor ductility, which seriously limit their wide application. Here, a surface nanocrystallization technique, i.e., ultrasonic surface rolling (USR), was applied on an as-cast AZ91 Mg alloy sheet to improve its corrosion resistance and mechanical properties. The USR produces double smooth surfaces with Ra=0.026 μm and gradient nanostructured surface layers on the sheet. Due to this special microstructure modification, the USR sheet exhibits 51% and 50% improvements in tensile yield strength and ultimate strength without visibly sacrificed ductility comparable to its untreated counterpart, as well as a 24% improvement in surface hardness. The USR sheet also shows good corrosion resistance in 3.5% NaCl aqueous solution. The corrosion current density of the USR sheet reduces by 63% after immersion for 1 h, and 25% after immersion for 24 h compared to that of the untreated counterpart. The enhanced strength and hardness are mainly related to the gradient nanostructure. The improved corrosion resistance is mainly ascribed to the decreased surface roughness, nanostructured surface, and residual compressive stress. The present results state that USR is an effective and attractive method to improve multiple properties of Mg alloy casting parts, and thus can be used as an additional and last working procedure to achieve high-performance Mg alloy casting parts.

  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Share Article

    Article Metrics

    Article views (184) PDF downloads(28) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return